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Abstract

This thesis focuses on the programming of redundant robots in industrial contexts, with
the goal of developing methods and technologies to make robot programming more in-
tuitive and accessible to untrained users. Industrial robots can be indeed very hard to
program, even for experts. Classic task programming methods based on the specifica-
tion of Cartesian frames fail at offering an intuitive mapping between the task objectives
and the robot commands. Furthermore, they often end up generating overconstrained
motions, disregarding the possible redundant degrees of freedom, and reducing the prob-
ability of success in finding a feasible robot motion.

The work in this thesis starts by defining an intuitive task description, which is
formulated leveraging common understanding of spatial relations between objects. This
way, task requirements can be easily defined and understood by users with very limited
expertise in robotics. In fact, the obtained description is independent from the robot(s)
appointed to execute the task. Moreover, the considered methodology allows to constrain
only a minimum number of degrees of freedom. Robots are then automatically regarded
as redundant whenever possible. A novel constraint-based programming framework is
proposed, which allows to mathematically express intuitive task descriptions according to
a provided formalism. Furthermore, the framework is able to relate the task description
to the mathematical model of the robot(s) involved, and automatically generate motion
control problems. To solve such problems, this thesis introduces a general method for
hierarchical redundancy resolution under arbitrary constraints, in which both kinematic
(velocity or acceleration-based) and dynamic (torque-based) control of redundant robots
are handled in a unified fashion.

Finally, the thesis presents a software component which implements all the concepts
presented in this work, therefore realizing a productive tool for the intuitive specification
and the execution of industrial tasks on redundant robots.
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Sommario

Questa tesi tratta la programmazione di robot ridondanti in ambito industriale, con
l’obiettivo di sviluppare metodi e tecnologie per rendere la programmazione dei robot
più intuitiva ed accessibile a utenti non esperti. La programmazione di un task industriale
può risultare infatti un’operazione lunga e tediosa. I classici metodi di programmazione,
basati sulla specifica di terne cartesiane, non riescono a catturare in maniera intuitiva gli
obiettivi del task assegnato e generano spesso moti sovravincolati, trascurando i possibili
gradi di libertà ridondanti offerti dal manipolatore.

Il punto di partenza di questo lavoro è la definizione di un modello di descrizione
intuitiva del task, basato sulla specifica di semplici relazioni spaziali tra oggetti. La de-
scrizione ottenuta è completamente indipendente dai robot incaricati di eseguire il com-
pito assegnato. In questo modo, gli obiettivi del task possono essere facilmente definiti e
compresi da utenti con conoscenze limitate di robotica. Inoltre, la metodologia introdotta
consente di vincolare un numero minimo di gradi di libertà del manipolatore. I robot
sono quindi automaticamente considerati ridondanti, quando possibile. Attraverso un
nuovo framework di constraint-based programming, è possibile poi esprimere matemati-
camente, secondo un preciso formalismo, le descrizioni intuitive introdotte. Il framework
proposto è in grado di mettere in relazione la descrizione del task con il modello matem-
atico dei robot coinvolti e di generare automaticamente problemi di controllo del moto.
Per risolvere tali problemi, questa tesi introduce un metodo generale per la gestione della
ridondanza, che consente sia il controllo cinematico che dinamico di robot.

Infine, la tesi presenta un componente software che implementa tutti i concetti pre-
sentati in questo lavoro, realizzando così uno strumento produttivo ed efficace per la
specifica e l’esecuzione intuitiva di task industriali su robot ridondanti.
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Notation

The symbols in this thesis are chosen according to the following conventions:

• Scalar values or signals are denoted by italic letters such as x;

• Vectors are denoted by boldface lowercase letters such as x;

• Matrices are denoted by boldface uppercase letters such as A;

• Sets are denoted by calligraphic letters such as Z.

The following acronyms have a special meaning:

CLIK Closed-Loop Inverse Kinematics

DoF Degree of Freedom

eSNS extended Saturation in the Null Space

IoC Internet of Construction

KSMG KUKA Smart Motion Generator

PoC Point of Control

QP Quadratic Programming

SNS Saturation in the Null Space

SoT Stack of Tasks

VKC Virtual Kinematic Chain
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Chapter 1

General Introduction

1.1 Motivation

Since their introduction in the early 70s in shop floors and production lines, industrial
robots have been massively employed to execute tasks with high precision, speed, and
endurance. Over the years, they have replaced humans in many tedious and dangerous
works. Welding, painting, deburring, laser-cutting, palletizing are just some examples of
typical industrial tasks that are nowadays fully automated in medium to large companies
in the manufacturing sector.

Industrial robots can be used as incredibly effective tools and yet they can be very
hard to program. The programming stage can easily take hundreds of hours even for
expert programmers, especially when involving complex movements or the coordination
of multiple robots. The required effort and costs are often considered tolerable since,
once programmed, every robot is very likely to repetitively perform the same motion for
a very long time, possibly its entire service life. However, this dramatically reduces the
flexibility of these machines and, thus, their potential.

Modern production lines demands for versatility and high flexibility in reprogramming
robotic systems, due to frequent changes in the environment or switches of production.
Flexibility and ease of use are also crucial aspects for small and medium enterprises. In
this sector, the lack of trained robot programmers, the frequent changes in production,
and the typically low volumes of required robots cause a large number of tedious opera-
tions still to be performed manually by humans. Thus, a huge potential for automation
remains unexploited. A similar scenario is observed in the service robotics field. Here,
robots are typically required to perform useful tasks for humans. Clear and intuitive
programming interfaces are therefore required, and reprogramming should happen with
very limited effort. At the current state, all the aforementioned demands remain mostly
unmet.

Classic programming methods for industrial robots are based on the specification of
Cartesian frames. The robot is required to align a body-fixed frame, usually attached
to the robot end effector, to a world-fixed frame, e.g., placed in the free space or on
the workpiece. The world-fixed frame can additionally be specified to move on a desired
Cartesian trajectory, e.g., to follow a linear path with a given velocity profile. Motion
can also be directly commanded to each joint of the robot to move towards the desired

1



2 CHAPTER 1. GENERAL INTRODUCTION

frame according to some interpolation law. In any case, generating robot motion requires
solving the inverse kinematics problem for each desired Cartesian frame.

From the methodology described above, it is immediate to realize that, besides hav-
ing a good knowledge of the process, programming an industrial robot requires a certain
training. First, it is not immediate to think of task requirements in terms of Cartesian
frames. Thus, a certain effort is typically required to convert the actual task objectives
into a sequence of desired frames. Furthermore, there are several reasons why the motion
planning could fail. These include running into joint limits or collisions with the environ-
ment. A certain level of experience is therefore required when placing Cartesian frames,
to prevent the robot to move towards dangerous or unfeasible configurations. Finally,
as the vast majority of industrial robots is characterized by a 6-axis serial kinematic
chain, the specification of Cartesian frames only leaves a finite and very limited number
of alternative postures available when executing a given task. However, a considerably
large number of industrial applications does not require constraining all the six degrees
of freedom of the robot tool. In such a condition, the robot mechanism could then be
regarded as redundant. Thus, classic robot programming tends to overconstrain the me-
chanical system, significantly limiting the ability of the robot to accomplish the assigned
task.

1.2 Research Questions

From the considerations in the previous section, it clearly appears that the way indus-
trial robots are currently programmed is not suitable in many relevant contexts. From
a conceptual point of view, making programming of industrial robots more accessible to
untrained users would require, first of all, more intuitive interfaces. According to this
idea, programming a robot should focus more on how a task is described and accom-
plished, rather than specifying every single motion the robot should perform. A proper
task description should focus on the actual task requirements, and avoid overconstraining
the mechanical system. This leads to the first research question of this thesis:

Q1: What is an intuitive task description?

This question is mainly addressed in Chapter 2, where a task is formulated as an oper-
ation enforcing specific spatial relations (geometric constraints) among a certain set of
involved objects. The proposed formulation is independent from the robot(s) respon-
sible to perform the task. This simplifies the definition and the understanding of task
requirements to users with limited robotics expertise. To support the presented concept,
three case studies are introduced, which are then analyzed and considered throughout
the thesis.

Once a task is described, there is still the problem of computing the robot motion
that actually fulfills the given requirements. Therefore, the second research question,
directly following from the first one, can be formulated as follows:

Q2: How can the robot motion be automatically generated from the intuitive task
description?
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This question is mainly addressed in Chapter 3, where a constraint-based mathematical
formalism is introduced. Such formalism naturally supports the intuitive task description
from Chapter 2. At the same time, it allows through a systematic procedure to build
motion control problems. The method naturally scales to collaborative multi-robot ap-
plications, which are handled in a unified fashion. Since the intuitive task description
aims at constraining only a minimum number of degrees of freedom, the generated mo-
tion control problems generally involves redundancy resolution. This typically requires
solving constrained optimization problems. However, the different interfaces of robot
joint controllers (e.g., position, velocity or torque), together with the various objectives
one might wish to achieve, create a certain heterogeneity in the formulation and the
solution of such problems. This leads to the third research question:

Q3: What is a general and efficient method to solve redundancy resolution problems?

This question is addressed in Chapter 4, where a general framework for the formulation
of redundancy resolution problems is proposed at both kinematic and dynamic level.

Finally, the thesis additionally addresses the question of how a software component
for intuitive programming of redundant robots could be structured. To this end, general
design guidelines are given in Chapter 2, while Chapter 5 provides the implementation
details of a software component developed during the course of the doctorate study.

1.3 Outline
This section briefly describes the outline of this thesis (Fig. 1.1).

Chapter 2: Task Specification

This chapter recalls the state of the art in the field of industrial robot programming,
and defines the concept of intuitive task description. Furthermore, it introduces the
three case studies considered throughout the thesis. Finally, it outlines the layers of the
proposed architecture for intuitive robot programming.

The chapter extends the core ideas presented in the following paper:

M. D. Fiore, Felix Allmendinger, Ciro Natale. "A General Constraint-Based Pro-
gramming Framework for Multi-Robot Applications", In: Robotics and Computer Inte-
grated Manufacturing (currently under review).

Chapter 3: Constraint-Based Programming

This chapter formulates a novel constraint-based programming framework allowing intu-
itive task descriptions to be mathematically expressed according to a suitable formalism,
which can handle single and multi-robot applications in a unified fashion. It also il-
lustrates a systematic procedure to automatically derive motion control optimization
problems, which can be solved to generate robot motion.
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Figure 1.1: Thesis outline.

The chapter is based on and extends the following publications:

M. D. Fiore, Felix Allmendinger, Ciro Natale. "A General Constraint-Based Pro-
gramming Framework for Multi-Robot Applications", In: Robotics and Computer Inte-
grated Manufacturing (currently under review)

J. Lachner, V. Schettino, F. Allmendinger, M. D. Fiore, F. Ficuciello, B. Siciliano, and
S. Stramigioli (2020). “The influence of coordinates in robotic manipulability analysis”.
In: Mechanism and machine theory 146, p. 103722.

Chapter 4: Redundancy Resolution

This chapter focuses on general methods to solve the constrained optimization problems
originating from Chapter 3. In particular, it proposes a novel general framework for hier-
archical redundancy resolution under arbitrary constraints. Moreover, it addresses some
critical aspects of discrete-time implementations of the redundancy resolution solver.

The chapter is based on and extends the following publications:

V. Schettino, M. D. Fiore, C. Pecorella, F. Ficuciello, F. Allmendinger, J. Lachner,
S. Stramigioli, and B. Siciliano (2020). “Geometrical Interpretation and Detection of
Multiple Task Conflicts using a Coordinate Invariant Index”. In: 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 6613–6618

A. Ziese, M. D. Fiore, J. Peters, U. E. Zimmermann, and J. Adamy (2020). “Redun-
dancy resolution under hard joint constraints: a generalized approach to rank updates”.
In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, pp. 7447–7453

M. D. Fiore and C. Natale (2021). “Discrete-time closed-loop inverse kinematics: A
comparison between Euler and RK4 methods”. In: 2021 29th Mediterranean Conference
on Control and Automation (MED), pp. 584–589
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M. D. Fiore, G. Meli, A. Ziese, B. Siciliano, and C. Natale (2023). “A General Frame-
work for Hierarchical Redundancy Resolution Under Arbitrary Constraints”. In: IEEE
Transactions on Robotics, pp. 1–20

Chapter 5: KUKA Smart Motion Generator

This chapter presents a software component, named KUKA Smart Motion Generator,
developed during the course of the doctorate study. The component embeds the con-
cepts and the methodologies developed throughout the thesis, implementing a complete
software framework for intuitive task programming, from symbolic task specification to
automatic robot motion generation.

Chapter 6: Conclusion

This chapter discusses the results of this work and gives directions for possible future
extensions.
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Chapter 2

Task Specification

2.1 State Of The Art In Industry

Industrial robots have been developed for decades thinking of them as extremely pro-
ductive machines operating in fixed cells, moving their end effector to carry out some
planned tasks. Over the years, significant progress has been made on the mechatronic
side to deploy high-payload and, more recently, low-cost and lightweight robots. With
the spread of cobots, these machines are finally required to overstep working cells and
work side-by-side with humans. In this context, easy programming interfaces have also
become crucial to the overall user experience. In the last years, robot manufactures,
as well as independent software companies, have invested considerable efforts in the
development of graphic frameworks for application programming, enabling users with
no expertise in robot programming languages to program robotic applications. These
frameworks typically present a set of parameterized function blocks that simplify the
programming of new applications or the changing of existing ones. Moreover, an inte-
grated scene viewer is generally provided to visualize features of interest and preview the
outcome of the programmed motion through simulation (Fig. 2.1).

In spite of the improved user experience, however, not much has changed in the way
the actual robot motion is specified. Indeed, when it comes to motion programming, any
robot interface substantially offers two possible commands (Fig. 2.2):

• joint motion commands, mainly used for approach/departure motions before/after
task execution: every joint of the robot is commanded to a specific value or to follow
a specific joint space trajectory;

• Cartesian motion commands, mainly used for task execution: a frame of in-
terest on the robot end effector is commanded to a desired pose or to follow a
Cartesian trajectory; the actual joint motion is then obtained via inverse kinemat-
ics techniques.

Task programming via Cartesian frames imposes the control of the 6 Degrees of Freedom
(DoFs) of the end-effector body. However, many industrial tasks present tool symmetry,
workpiece geometry or final objectives that allow partial or complete relaxation of some

7



8 CHAPTER 2. TASK SPECIFICATION

Figure 2.1: Modern programming frameworks for industrial robots (Source: KUKA,
https://www.kuka.com/en-de/future-production/iiqka-robots-for-the-people/robotic-
republic).

Figure 2.2: Possible motion commands in common user interfaces for industrial robots.

of the DoFs. Thus, even common 6-axis serial manipulators can be regarded as redundant
for a variety of industrial applications.

Figure 2.3 shows the redundant DoFs offered by common industrial tools for the
execution of tasks such as laser tracing, welding, and deburring. In the first case, the
task can be performed with a variety of possible tool poses, as long as the laser beam
is pointing to target point (highlighted in green). Depending on the task requirements,
the distance of the tool from the target point may also be allowed to vary. The welding
application allows a relaxation of the tool orientation, as the major task requirement is
that the tip of the welding torch is at the target point. Finally, the deburring application
prescribes for the drill bit (represented by the blue cylinder) to slide over a target surface
(green rectangle). Also this operation allows for a certain relaxation of the orientation
(the rotation about the blue axis of the cylinder frame can be disregarded) and some
translational freedom in the positioning of the tool along the vertical direction.
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Figure 2.3: Redundant degrees of freedom offered by some typical industrial applications:
laser tracing (left), welding (center), and deburring (right).

Figure 2.4: Failures during motion planning due to the robot reaching joint limits (left)
or outstretched configurations (right).

Based on the above considerations, it is easy to realize that programming industrial
applications based on Cartesian frames means in the majority of cases fixing the tool to
just one of the infinite possible poses that would accomplish the task, therefore overcon-
straining the robotic system. This dramatically reduces the robot motion capabilities
and, consequently, the probability of finding feasible motions for the given task. Figure
2.4 show some typical failures in which the assigned Cartesian trajectory leads the robot
into unfeasible configurations, i.e., beyond joint limits, or out of its reachable workspace.
Another reason for failure during motion planning is that the desired Cartesian trajec-
tory corresponds to robot postures that cause collisions with the environment or the
robot itself (self-collisions).

In addition to the already discussed aspects, it is also useful to consider that mapping
the actual task objectives into desired Cartesian frames is not always an intuitive and
straightforward process. In fact, since no task is naturally described in terms of frames,
the required effort might become significant, and finally lead to over-engineered solutions.
Often very long trial-and-error procedures are needed, until a feasible motion is found.
The process can even last hundreds of hours, and become more tedious and cumbersome
in the case of multi-robot applications. A typical industrial example in this field is
the case in which a first mechanism, here indicated as the positioner, is responsible
for positioning the workpiece in space, whereas a second robot, the executor, performs
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Figure 2.5: Multi-robot welding application programmed using Cartesian frames. A 2-
DoFs pan-tilt table works as positioner while a 6-axis executor is responsible for the task
execution.

the task. Commonly, the positioner is represented by a specialized unit with a small
number of DoFs, such as a linear axis or a pan-tilt table (Fig. 2.5). Depending on the
application, there might also be multiple executors for one positioner. Programming
such applications typically requires the following sequence of steps:

1. a Cartesian trajectory is specified for the executor, while the positioner is at a
reference configuration;

2. a desired (joint or Cartesian) trajectory is provided to the positioner, therefore
generating a fixed motion for this unit;

3. the trajectory originally planned for the executor is adjusted by adding an offset
deriving from the relative motion of the positioner.

Besides generating long and laborious programming sessions, the described procedure
completely ignore the additional redundant DoFs offered by the positioner to the total
robotic systems. Such redundancy could instead be efficiently exploited in the search for
feasible motions.

All of the above mentioned considerations highlight how task descriptions based on
Cartesian frames do not exploit possibly existing redundant DoFs, and produce long and
tedious programming sessions. The resulting effort is often considered tolerable consid-
ering that, once programmed, every robot is very likely to repetitively perform the same
motion for a considerably long time. However, this approach is not suitable for a variety
of applications (better discussed in Sect. 1.1), which demand flexible production lines
and solutions that can be easily re-programmed. In such a context, new programming
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paradigms are needed, which allow for more intuitive task descriptions enabling non-
experts to work with robots. Additionally, the task description should guarantee the
exploitation of redundant DoFs.

In recent years, research has started to focus on object geometric features and rela-
tions, as the key to capture only the relevant DoFs that need to be constrained in the
execution of a task. Geometric constraints have been found to be powerful tools in differ-
ent contexts (Bartels, Kresse, et al. 2013; Kresse and Beetz 2012; Somani, Gaschler, et al.
2015), also to characterize the task requirements in a way that is suitable also for users
with limited robotics knowledge. Following these principles, the next sections present a
formal description of industrial tasks based on geometric constraints, structured on two
levels of abstraction.

2.2 Task Description Based On Geometric Constraints

Reasoning about what is an intuitive task description for untrained robot users, the
immediate question arises on how a human would commonly explain the requirements of
a certain industrial process using natural language. Considering the tasks in Fig. 2.3, it is
easy to imagine that the description for the laser tracing application would be something
similar to "the laser beam must hit the target point". Similarly, the characterization of
the welding task would probably be "the tip of the welding torch must be at the target
point". In other words, the objectives of the considered industrial tasks are naturally
described as spatial relations between two objects, i.e., the tool and the workpiece. The
same applies for the deburring case, and for a variety of other industrial tasks (milling,
polishing, laser cutting, ...). More specifically, the desired spatial relations consist of
a set of geometric constraints that should be enforced between certain features of the
objects involved. In the laser tracing application, for example, the laser beam can be
regarded as a geometric feature of the tool, whereas the target point is a feature of the
workpiece.

Building on these simple observations, the key idea behind this work is that an in-
dustrial task always consists in accomplishing certain spatial relations between objects.
Such relations, and their further characterization through geometric constraints and fea-
tures, also represent the most natural way of describing the task objectives. Therefore,
a task description can be regarded as intuitive if it directly allows the specification of
geometric constraints between object features. While translating, at any instant of time,
the spatial relations between two objects into desired and controlled Cartesian frames
is not always straightforward and likely to result in overconstrained task specifications,
geometric constraints between features can be easily described through mathematical
expressions. Furthermore, while task specification through Cartesian frames fully con-
strain the 6 DoFs of the relative pose between two objects, geometric constraints allow
to capture the minimum number of DoFs to constrain in order to fulfill the task. Finally,
the mathematical expressions describing the geometric constraints enable the formula-
tion of motion control problems with automatic redundancy exploitation, as it will be
shown in Chapter 3.

For the sake of completeness, it should be noticed that the interaction between two
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Figure 2.6: Laser tracing task specification.

objects, and therefore also their spatial relation, depends in general on the forces that
they exchange. However, in the vast majority of industrial applications the force ex-
change can be disregarded, as the contact between the objects is absent, intentionally
rigid or handled through mechanical impedance embedded in the robot tool.

The remainder of this section is dedicated to the analysis of the three case studies
in Fig. 2.3, and the derivation of the geometric constraints describing their objectives.
These three specific applications have been chosen for the generality of the resulting
geometric constraints, which could be easily applied also to other industrial tasks.

2.2.1 Laser tracing

As already anticipated, the objective of the laser tracing application is for the laser beam
to hit the target point. Thus, a geometric constraint is easily obtained imposing that the
line L on which the laser beam lies on passes through the desired point Pd(xd, yd, zd), as
shown in Fig. 2.6. This constraint can be symbolically expressed as

Coincident(L, Pd). (2.1)

Recalling that a line is fully specified by an origin point, P (x, y, z), and a unit vector
indicating its direction, d, (2.1) can be mathematically expressed by the 2-DoFs equality
constraint

null(dT ) · (P − Pd) = 0, (2.2)

where the operator null(·) returns an orthonormal basis for the nullspace of the matrix or
row-vector it is applied to. Depending on the specific application, additional constraints
might also be considered. For example, the angle between the laser beam and the working
plane is only allowed to vary in a small range in laser welding/cutting applications.
Also the distance between the point of emission and the target point may be subject
to constraints given by the laser beam focusing. However, as similar requirements are
included in the following case studies, the laser tracing application will only involve the
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Figure 2.7: Welding task specification.

constraint (2.2) in the remainder of this work. This will allow to present a set of case
studies with an increasing level of complexity. Finally, it should be noticed that the
target point could also be required to vary its position, e.g., in tracking applications.
Nevertheless, the proposed task description would still be valid at each instant of time,
considering a correctly updated target point.

2.2.2 Welding

The main requirement of the welding application is for the tip of the welding torch,
indicated by the point P , to be at a desired point Pd. Additionally, it is typically
required that the task is performed with a certain inclination of the tool. In other
words, the angle between the tool main axis, L, and the working plane, Π, should be
maintained in a given range (Fig. 2.7). This last requirement is derived from process
quality specifications, but it also helps preventing undesired collisions between the tool
and the environment.

The described constraints can be symbolically written as

Coincident(P, Pd)

Angle(L,Π) > αmin

, (2.3)

with αmin ∈ [0, π
2
] indicating a minimum desired angle between L and Π. Mathematically,

(2.3) can be expressed by the following set of constraints{
P − Pd = 0

α− αmin ≥ 0
, (2.4)

where α ∈ [0, π
2
] represents the angle between L and Π. Indicating with dL and nΠ the

unit direction vector of L and the unit normal of Π, respectively, it is possible to compute
α = asin(dL · nΠ). It should be noticed that (2.4) only constrains 4 DoFs, leaving two
redundant DoFs to the process execution. Nevertheless, only 3 DoFs are fixed while
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Figure 2.8: Metal workpiece considered for the deburring application (left), cylindrical
drill bit (center), and determination of the deburring surface from process parameters
(right).

a certain freedom is left on the value of α. Finally, as in the previous case study, the
proposed task description can be employed as instantaneous description of the welding
task in case the target point needs to vary over time.

2.2.3 Deburring

The objective of deburring is to remove burrs from the edges of metal workpieces. This
operation is performed by allowing the rotating drill bit of the deburring tool to slide
over time on a surface of interest, here referred to as deburring surface. This surface
is a virtual area, generally internal to the workpiece, corresponding to the processed
edge once the deburring operation is completed. As such, it can be determined out
of process parameters, such as the desired penetration (depth) and inclination (angle)
of the deburring tool during operation. In particular, the deburring use case analyzed
throughout this thesis considers a metal workpiece with straight edges and a cylindrical
drill bit. Thus, the deburring surface will be characterized as a rectangle (Fig. 2.8).

Differently from the previously analyzed industrial tasks, the requirements of the de-
burring application intrinsically prescribe a motion of the tool over time. Nevertheless,
a task description can be obtained as in the previous case studies, which provides an
instantaneous specification of the geometric constraints characterizing the task. In par-
ticular, at each instant of time, the process requirements impose that the lateral surface
S of the cylindrical drill bit must be tangent to the deburring surface at a very specific
line segment, P1P2, which is orthogonal to the direction of motion (Fig. 2.9). The de-
scription of the overall deburring operation can then be obtained simply by translating
the segment P1P2 over time on the deburring surface along the direction of motion. The
described instantaneous constraints can be summarized as

Tangent(S,Π1, P1P2), (2.5)

where Π1 is the plane the deburring surface lies on. However, it is not straightforward
to convert the constraint (2.5) into mathematical expressions. It is therefore necessary
to further detail the tangency condition.

A primary condition for the surface S to be tangent with Π1 at P1P2 is that the
cylinder axis L must be parallel to P1P2, and a generic point P belonging to L must be
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Figure 2.9: Deburring task specification.

at a distance r from Π1, with r being the cylinder radius. More specifically, a signed
distance function should be employed to ensure that the cylinder fulfills the tangency
condition while being on the correct side of Π1.

Imposing that the intersection between S and Π1 is exactly the segment P1P2 requires
two additional conditions. First, L should be located on Π2, defined as the plane em-
bedding P1P2 and orthogonal to Π1. Then, the center of P1P2, indicated as Pm, should
maintain a certain distance from the plane embedding the cylinder base B. Such dis-
tance must be in the range [ l

2
;h − l

2
], with l being the length of P1P2, and h being the

cylinder height. More specifically, a signed distance function should be used in this case
to ensure that the specified range realizes the desired tangency condition.

Given the above considerations, the symbolic constraint (2.5) can be refined and
expressed as

Parallel(L, P1P2) (2.6a)
SignedDistance(P,Π1) = r (2.6b)
Coincident(P,Π2) (2.6c)

l

2
≤SignedDistance(Pm,ΠB) ≤ h− l

2
, (2.6d)

where ΠB indicates the plane embedding the cylinder base B. Based on simple geometry
analysis, it is now possible to find mathematical expressions for each of the constraints
(2.6). Indeed, the parallel condition (2.6a) can be mathematically expressed by the
2-DoF constraint equation

null(dT
L) · dP1P2

= 0,

with dL and dP1P2
being the unit direction vectors of L and P1P2, respectively. The

signed distance relation (2.6a) is instead a 1-DoF constraint, which can be written as

nΠ1 · (P − PΠ1) = r,
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where nΠ1 and PΠ1 are the unit normal vector and a point of Π1, respectively. Similarly,
the coincident relation (2.6c) constrains one DoF, and can be written as

nΠ2 · (P − PΠ2) = 0,

where nΠ2 and PΠ2 are the unit normal vector and a point of Π2, respectively. Finally,
the condition (2.6d) is a 1-DoF inequality constraint that can be expressed as

l

2
≤ nΠB

· (Pm − PΠB
) ≤ h− l

2
,

with nΠB
and PΠB

being the unit normal vector and a point of ΠB, respectively. Thus,
the deburring task description constrains 5 DoFs of the tool, leaving one redundant DoF.
More precisely, four of the constrained DoFs are fixed, while a certain freedom is allowed
on the last one.

Lastly, it should be noticed that the obtained task description is not limited to
rectangular deburring surfaces. In fact, even curved edges could be handled by defining
Π1 as the plane embedding the line segment P1P2 and the vector of the motion direction.
A different shape of the drill bit (e.g, conical or spherical) would instead require deeper
modifications to the set of the geometric constraints.

2.3 Specification Layer
In the previous sections, the observation was made that, compared to established meth-
ods based on Cartesian frames, typical industrial tasks are more intuitively described by
a set of geometric constraints. It has also been shown that formulating a symbolic task
description grounded in geometric features and constraints allows a minimal task spec-
ification, meaning that the corresponding mathematical expressions are able to strictly
constrain the minimum number of DoFs that accomplishes the task objectives. Fur-
thermore, it has also been anticipated that such methodology enables the automatic
exploitation of redundant DoFs during the generation of the robot motion. Finally, the
design of geometric constraints has been practically shown for three relevant industrial
applications.

While programming an application via Cartesian frames might require for the user
to have both process and robot expertise to succeed, the proposed task description only
focuses on the core constraints that characterize a task and is completely independent
from the specific robot at hand. In fact, the description would not change whether the
actual task execution involves the control of one or multiple robots. However, a certain
level of process knowledge is still needed. Furthermore, the design of the minimal set of
geometric constraints might require some experience for more complex tasks, such as the
deburring application from Sect. 2.2.3. On the other hand, the geometric constraints
describing a task basically depend on the geometry of the objects involved and some
additional process parameters. In the considered case studies, for example, the task
always involves two objects, i.e., a tool and a workpiece. Geometric constraints are
always imposed between features of these two objects and depend on object properties
(e.g,. the radius and height of the cylinder in the deburring application) or process
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Figure 2.10: Task characterization in the specification layer.The welding application is
used as example.

parameters (like the minimum angle of approach in the welding application). Thus,
once the relevant geometries and parameters are known, the generation of the geometric
constraints could also be automated for a known task. This enables the realization of
a specification layer in which a task is characterized on a higher level of abstraction
as an action involving a certain number of elements (Fig. 2.10). In this context, a
task element represents a general entity presenting geometric features that are relevant
to the task description. Thus, a task element could represent a physical object, like a
tool or a workpiece, but also the generic robot environment in the case of trajectory-
following applications in free space. The task action, on the other hand, symbolically
indicates the operation to perform, and presents a set of parameters that characterize
the task. Additionally, the indication of the task action allows to recover from the
involved elements the geometric features that are relevant to the constraint-based task
description. Thus, a symbolic list of geometric constraints can be correctly generated.
Moreover, since every possible robot involved in the task will be connected to one of the
task elements (typically, the tool), it might also be possible to retrieve the information
about additional constraints imposed by the specific mechanism, such as joint limitations
or self-collision avoidance. This information can be used during the motion generation
phase to ensure the computation of feasible movements.

Certainly, the idea of a specification layer as illustrated above contemplates the ex-
istence of known tasks actions and elements, for which the design of the geometric con-
straints has already been carried out. Thus, it is possible to imagine a multi-layer
structure for the definition and the execution of robot tasks that offers two different
APIs. The first one, on the lower level, allows for the direct specification of symbolic
geometric constraints. This interface is meant for users with a certain knowledge of the
process and possibly some experience in designing minimal sets of geometric constraints.
On a higher level, the second API allows for the specification (and parameterization) of
tasks from a set of known resources, i.e., combinations of actions and elements for which
the geometric constraints have been already designed. This interface is meant for users
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Figure 2.11: New stack for the intuitive programming of industrial tasks.

with limited process knowledge and no experience in designing geometric constraints.
At this level, such users would simply select an action and the elements involved in the
process, provide values for the parameters associated with the action, and benefit from
the constraint-based task description without having to design any geometric constraint
or understand robot redundancy. Figure 2.11 summarizes the proposed stack for task
programming, which can be used as a replacement of the classic scheme illustrated in
Fig. 2.2.



Chapter 3

Constraint-Based Programming

3.1 Introduction

The previous chapter discussed the advantages of constraint-based task descriptions over
classic specification methods based on Cartesian frames. In particular, it was shown that
tasks are intuitively described as sets of geometric constraints, which can be expressed
through mathematical relations between certain features of the elements involved. It
was also anticipated that such relations support the generation of (constrained) opti-
mization problems for the computation of feasible robot motions. However, a suitable
formalism is required to relate the mathematical expressions describing the task to the
robots appointed to execute it, and consequently generate proper optimization problems.
In other words, a systematic procedure is required to define tasks in a way that enables
the automatic generation of robot motion. To this end, this chapter formulates a gen-
eral constraint-based programming framework for the specification of tasks as minimum
sets of constraints and the automatic generation of motion optimization problems. The
framework can handle general constraints, whether they are related to the task descrip-
tion or the robotic mechanism, and includes an explicit time dependency, to better handle
time-varying quantities. The proposed formalism naturally scales to robotic applications
with multiple robots, on which multiple points of control might be of interest.

As some constraint-based programming frameworks already exists in the literature,
this chapter also includes a detailed theoretical comparison with prior work in this field.
It will also be shown that classic robot programming based on Cartesian frames is not
excluded by the proposed framework. In fact, it will represent a special case within the
introduced formalism.

The validity and the effectiveness of the proposed approach is numerically supported
by two illustrative examples, involving both single and multi-robot applications. Finally,
the three case studies from Sect. 2.2 are reconsidered in light of the proposed formalism,
and solved with the methodology provided by the framework.

3.1.1 Related work

Although constraint-based programming frameworks have been mainly developed in re-
cent years, the idea of programming tasks using a minimum number of constraints pre-

19
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dates their formulation by some decades. Basic concepts are already present in the work
by Ambler and Popplestone (1975), in which positioning tasks are characterized for the
first time through geometric relations between two objects. However, after inferring a
valid relative pose of the two objects, a desired Cartesian frame is computed for the
robot end-effector that has to assemble the two objects.

The formulation of the so-called task function approach by Samson, Espiau, et al.
(1991) has been another significant step, introducing a formalism to describe tasks as
positioning problems characterized by a vector function of joint positions and time.
Solving the task then results into a regulation problem of the task function. Since the
robot often presents more DoFs than needed to perform the assigned tasks, numerical
methods based on the operational space formulation (Dietrich and Ott 2019; Fiore, Meli,
et al. 2023; Khatib 1983; Sentis and Khatib 2004; Siciliano and J.-J. Slotine 1991) are
needed to solve the control problem. This approach has been later used to successfully
solve different classes of applications (Espiau, Chaumette, et al. 1992; Fruchard, Morin,
et al. 2006; Marchand, Chaumette, et al. 1996; Mezouar and Chaumette 2002).

Another method for the formalization of task descriptions was proposed by Bruyn-
inckx and De Schutter (1996). This work introduces the task frame, a frame of interest in
which position and/or force constraints can be conveniently expressed. Based on similar
ideas, Basile, Caccavale, et al. (2012) proposed a task-oriented motion planning for co-
operative multi-robot applications. However, these methods highly relies on the chosen
frames and mostly apply for simple task geometries.

A first attempt at formalizing a constraint-based programming framework has been
given in the work by De Schutter, De Laet, et al. (2007), in which the iTaSC (instanta-
neous Task Specification using Constraints) framework is introduced. The work proposes
a general and systematic procedure for task specification and control, including handling
of sensor data and geometric uncertainties. The approach is based on the definition of a
set of auxiliary variables, called feature coordinates. These coordinates are defined with
respect to additional object frames and feature frames, suitably chosen to simplify the
task specification. Geometric uncertainties are also explicitly modeled through an addi-
tional set of coordinates. The task specification is directly coupled to the generation of
constrained optimization problem. Specific work on the framework has been dealing with
particular control aspects, like the handling of inequality constraints (Decre, Smits, et al.
2009), time-independent trajectories (Decré, Bruyninckx, et al. 2013), and human-robot
collaboration scenarios (Vanthienen, De Laet, et al. 2012).

The use of feature coordinates and, more specifically, the direct correspondence of
these coordinates to Virtual Kinematic Chains (VKCs), is also the basis of the frame-
work by Kresse and Beetz (2012), which combines a specification layer based on sym-
bolic instructions with the iTaSC framework. However, feature coordinates have shown
significant drawbacks related to an additional computational burden and the possibil-
ity of representation singularities. For this reason a number of other constraint-based
programming frameworks has been proposed in recent years, which avoids the use of
such coordinates. The work by Mansard, Stasse, et al. (2009), for example, presents a
framework based on the task function approach that generalizes the inverse kinematics
problem. Nonetheless, no strict methodology is provided for specifying tasks and gener-
ate the control problem. The framework by Bartels, Kresse, et al. (2013) instead, avoids
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feature coordinates by introducing an explicit dependency of the task function from
the pose of the robot end effector. The introduced formalism, however, assumes fixed
manipulated objects and does not consider the possibility of joint space constraints. Dif-
ferently from the above-mentioned frameworks, the eTaSL/eTC (expressiongraph-based
Task Specification/expressiongraph-based Task Controller), attempts at using feature
coordinates exclusively to simplify the constraint expression, avoiding their use in the
definition of position closure equations. While avoiding representation singularities and
computational issues, this solution leads to optimization problems with mixed units,
whose drawbacks are better discussed in Sect. 3.3.2.

3.2 Mathematical Preliminaries

Constraint-based programming is based on techniques similar to those typically employed
to carry out the kinematic analysis of a robot, i.e., to perform the computation of the
position, velocity, and acceleration of a given robotic mechanism (Nikravesh 1988). With-
out loss of generality, this section focuses on the analysis of serial open-chain mechanisms
that only present revolute or prismatic single-DoF joints.

Consider the robot in Fig. 3.1. The pose of all bodies (links) composing the mecha-
nism structure can be uniquely specified by a set of coordinates. An infinite variety of
sets exists to describe the same kinematic structure (Lachner, Schettino, et al. 2020).
However, some choices are preferable, since they significantly simplify the mathematical
equations. In particular, a common choice is to select Lagrangian coordinates that de-
scribe the pose of each body relatively to the pose of the previous one. Moreover, as the
kinematic analysis is always applied to a closed chain of bodies, Cartesian coordinates are
typically chosen to describe the pose of the nth body of the mechanism with respect to
a fixed global coordinate system. Including the dependency on the time t, the described
set of coordinates can be expressed as

θ(t) = (q (t) ,p (t)) ,

with q ∈ Q ⊆ Rn being the vector of joint angles and/or translations describing the
robot configuration, and p ∈ P ⊂ Rp a vector representing the pose of a chosen frame
fixed to the nth body. The position analysis consists in obtaining the value of θ at any
given instant of time.

Since the mechanism joints impose certain conditions on the relative motion of the
links they connect, a certain relation exists between the coordinate vectors q and p. This
can be expressed by a set of h constraint equations

Φ(q(t),p(t)) = 0, (3.1)

known as natural constraints of the mechanism (Mason 1981). Since they describe po-
sition closure equations, the constraints in (3.1) are also known as kinematic loop con-
straints or position loop constraints (De Schutter, De Laet, et al. 2007). Considering
(3.1), the value of n+ p− h coordinates must be known at any given instant of time to
perform the position analysis. In this way, the constraint equations can be solved for the
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Figure 3.1: A serial open-chain mechanism and the set of coordinates chosen to describe
the pose of all its bodies: q = [q1 q2 . . . qn]

T is the set of joint coordinates describing
the robot configuration, whereas p expresses the pose of a frame fixed to the nth body
with respect to the fixed global coordinate system.

other (unknown) coordinates. A simple, yet effective technique, is the so-called method
of Appended Driving Constraints (Nikravesh 1988). In this method, additional constraint
equations, named driving constraints, are introduced to explicitly specify n+ p−h inde-
pendent coordinates as functions of time. Thus, the analysis is carried out by solving the
system of equations composed by natural and driving constraints. Finally, considering
the first and second time derivatives of this system of equations allows to carry out the
velocity and the acceleration analyses.

It should be noticed that for the considered kinematics, (3.1) can be rewritten using
the function

f : q ∈ Q ⊆ Rn → p ∈ P ⊆ Rp, f(q(t)) = p(t),

also known as forward kinematics function. In this case, p independent natural con-
straints exist, namely h = p. Therefore, n driving constraints are necessary to perform
the kinematic analysis. In particular, explicitly specifying the coordinates q as driving
constraints (q(t) = qd(t)) returns the well-known forward kinematics problem{

f(q(t))− p(t) = 0 natural constraints
q(t)− qd(t) = 0 appended driving constraints

.

3.3 Constraint-Based Programming Framework

Starting from the methodology introduced in the previous section, it is possible to derive
a systematic procedure for building systems of constraint equations, whose solution rep-
resents a suitable joint motion, q(t), that allows the robot to perform a given task. In
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the remainder of this chapter, it is assumed p = [pT
p pT

o
]T , with pp ∈ Pp ⊆ R3 denoting

the position of the frame, and po ∈ Po ⊆ R4 expressing its orientation in terms of unit
quaternions represented by 4-dimensional vectors.

3.3.1 Constraint-based task formulation

The basic idea behind the presented constraint-based programming framework is that a
task can be mathematically specified as a set of m constraints, which have the generic
form

e(q(t),p(t), t) = 0, (3.2)

where
e : (q ∈ Q,p ∈ P , t ∈ R+)→ e(q(t),p(t), t) ∈ Rm (3.3)

can be seen as a task function with explicit dependency on the frame p and the time t.
For the scope of this work, the frame represented by the vector of coordinates p will also
be referred to as Point of Control (PoC).

Being derived merely from the task description, the constraints in (3.2) do not depend
on the specific robot structure. Thus, they are referred to as artificial constraints (De
Schutter, De Laet, et al. 2007), as opposed to the natural ones. Nevertheless, it is
possible to use artificial constraints as appended driving constraints to build the system
of constraint equations{

f(q(t))− p(t) = 0 natural constraints
e(q(t),p(t), t) = 0 artificial constraints

, (3.4)

and solve it for q(t) in order to find the robot motion fulfilling the given task specification,
if there exist one. Depending on the specific combination of task and kinematic structure,
there might exist one or even multiple solutions. However, the typical nonlinearity of the
functions f(·) and e(·) makes the system (3.4) very difficult to solve in practice. Closed-
form solutions might be available only for special cases. Furthermore, if m < n, i.e., the
robot is redundant with respect to the assigned task, infinite solutions might exist and
the setup of a nonlinear optimization problem would be required for any instant of time.

Given the aforementioned considerations, it is worth shifting (3.4) to the first-order
differential level. In this way, it is possible to obtain equations that are linear with
respect to the time derivatives of q and p. Assuming f(·) and e(·) are of class C1, and
differentiating (3.4) with respect to the time yields

Ja (q (t)) q̇(t)− ṗ(t) = 0

Eq(q(t),p(t), t)q̇(t) +Epa((q(t),p(t), t)ṗ(t)+

+et(q(t),p(t), t) = 0

, (3.5)

with Ja = ∂f
∂q
∈ R7×n, Eq = ∂e

∂q
∈ Rm×n, Epa = ∂e

∂p
∈ Rm×7, and et =

∂e
∂t
∈ Rm. The

matrix Ja is also known as the robot (analytical) Jacobian matrix related to the PoC
(Siciliano, Sciavicco, et al. 2009). For the sake of readability, dependencies are omitted
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in the remainder of this chapter, unless essential for the characterization of new functions
and variables.

It should be noticed that ṗ = [ṗT
p ṗT

o
]T contains the time derivative of the unit

quaternion represented by po. From a robot control perspective, a more suitable choice
to describe the changing rate of the orientation po is represented by the body angular
velocity, ω ∈ R3. Nevertheless, a well-known relation exists between ṗo and ω. In fact,
expressing the orientation as po = [η ϵx ϵy ϵz]

T , with η and ϵ = [ϵx ϵy ϵz]
T being

the scalar and vector part of the quaternion, respectively, it is possible to write

ṗo =
1

2
Tω, (3.6)

with

T =


−ϵx −ϵy −ϵz
η ϵz −ϵy
−ϵz η ϵx

ϵy −ϵx η

 .

Substituting (3.6) in (3.5), and defining

T ′ =

I 0

0 1
2
T

 ∈ R7×6, T ′′ =

I 0

0 2T T

 ∈ R6×7, (3.7)

with I being the identity matrix, yields{
Jq̇ − v = 0

Eqq̇ +Epv + et = 0
, (3.8)

where J = T ′′Ja ∈ R6×n is the well-known geometric robot Jacobian matrix related
to the PoC, v = [ṗT

p ωT ]T ∈ R6 is the vector of linear and angular PoC velocity, and
Ep = EpaT

′ ∈ Rm×6. Another way to visualize (3.8) is in its matrix form J −I

Eq Ep

q̇
v

 =

 0

−et

 .

The matrix

M c =

 J −I

Eq Ep

 (3.9)

will be referred to as constraint matrix in the remainder of this chapter.
The system of equations (3.8) is linear with respect to q̇ and v and, therefore, can be

easily solved. Isolating the PoC velocity v in the first equation of (3.8) and substituting
it in the second equation yields

(Eq +EpJ) q̇ + et = 0. (3.10)
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Denoting with J c = Eq +EpJ and rvc = −et, eq. (3.10) can be finally rewritten as

J cq̇ = rvc . (3.11)

The matrix J c = J c(q(t), t) will be referred to as constraint Jacobian matrix, whereas
rvc = rvc(t) will be annotated as constraint reference velocity.

Assuming J c to be nonsingular, it can be easily noticed that an inversion of the
constraint Jacobian matrix would allow to compute the evolution of the joint velocities
that satisfy (3.11). However, in case of redundant robots, J c is a rectangular matrix
and, thus, not invertible. Nevertheless, (3.11) can be solved in a minimum-norm sense
by formulating the optimization problem

min
q̇

1

2
q̇THq̇, H ≥ 0

s.t. J cq̇ = rvc

, (3.12)

which has a quadratic cost function and linear (equality) constraints. Depending on
the initial value of the function (3.3), however, fulfilling (3.11) might not guarantee the
satisfaction of the original constraints (3.2). To solve this issue, a desired evolution of
the task function can be imposed by modifying the constraint reference velocity rvc . For
example, the choice (Balestrino, De Maria, et al. 1984; Sciavicco and Siciliano 1986)

rvc = −et −Ke, K > 0 (3.13)

imposes an evolution of the task function as a first-order linear system

ė+Ke = 0,

with a convergence rate depending on the eigenvalues of K.
One last aspect to consider is that many tasks are more naturally described through

inequality constraints. In such case, the artificial constraints (3.2) take the form

e(q(t),p(t), t) ≤ 0, (3.14)

where inequalities are intended component-wise. Thus, Eq. (3.4) becomes{
f(q(t))− p(t) = 0 natural constraints
e(q(t),p(t), t) ≤ 0 artificial constraints

,

which, by time differentiation, returns{
Jq̇ − v = 0

Eqq̇ +Epv + et ≤ 0
. (3.15)

Following the same mathematical steps seen for the case of equality constraints yields

J cq̇ ≤ rvc , (3.16)
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with rvc = −et being the constraint velocity upper bound, which can be modified to
impose a desired evolution of the task function and, consequently, the satisfaction of
(3.14). For example, the choice (Aertbeliën and De Schutter 2014)

rvc = −et −Ke, K > 0 (3.17)

imposes an evolution of the task function that is no faster than a first-order linear system
with a convergence rate depending on the eigenvalues of K. Finally, the optimization
problem (3.12) takes the form

min
q̇

1

2
q̇THq̇, H ≥ 0

s.t. J cq̇ ≤ rvc

. (3.18)

Considering the possibility of having both equality and inequality constraints, a more
general form of the optimization problem computing the robot joint motion is

min
q̇

1

2
q̇THq̇, H ≥ 0

s.t. J eq,cq̇ =rvc , rvc ≤ J iq,cq̇ ≤ rvc

, (3.19)

where the subscripts eq and iq indicate the Jacobian matrices that are related to the
equality and inequality constraints, respectively, and the inequality constraints have
been expressed with respect to lower and upper bounds. Techniques to solve the class of
optimization problems in (3.19) are thoroughly discussed in Chap. 4.

3.3.2 Relation to previous work

The systematic procedure introduced in the previous section allows translating constraint-
based task specifications into optimization problems from which it is possible to obtain
the robot joint motion accomplishing the given task. The proposed methodology is based
on a general constraint definition, which directly employs the set of coordinates typically
used for the kinematic analysis of robots. Moreover, by introducing the concept of PoC,
the proposed framework can consider constraints involving frames fixed to any of the
robot body and it is, therefore, not restricted only to constraints on the end-effector
pose.

The method is clearly inspired by the task function approach by Samson, Espiau,
et al. (1991). However, the function introduced in (3.3) has an explicit dependency on
the PoC pose, p, which allows a full separation between task-related and robot-related
variables. Indeed, the specific kinematic chain only contributes to the definition of the
natural constraints in (3.8), while all the other terms involved in the system, namely
Eq, Ep, and et, are completely robot-independent. On the other hand, the explicit
time dependency of (3.3) enables an appropriate handling of time-varying constraints,
improving the overall task execution. It is also worth noticing that if the artificial
constraints are chosen as

p− pd(t) = 0,
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with pd being a desired pose for the PoC, the system (3.4) reduces to the well-known
inverse kinematics problem. Therefore, classic task programming based on Cartesian
frames is not excluded by the proposed constraint-based task description. On the
contrary, it represents a special case within the proposed framework. The same ap-
plies for pure joint motion specifications, which can be obtained with a task function
e(q, t) = q − qd(t).

As pointed out in Sect. 3.1.1, literature already offers a number of constraint-based
approaches for task programming, presenting similar features as the one introduced in
Sect. 3.3.1. In particular, the work on the iTaSC framework by De Schutter, De Laet,
et al. (2007) and Decre, Smits, et al. (2009) presents the same systematic modeling
procedure and a similar formalism. However, one main difference lies in the choice of the
set of coordinates describing the pose of the PoC. In place of Cartesian coordinates, iTaSC
introduces a new set of generic coordinates, named feature coordinates, here indicated by
the vector χ ∈ X ⊆ R6. The choice of the feature coordinates is left to the user and can
be done based on the specific application at hand. Considering a generic set of feature
coordinates, the artificial constraints (3.14) can be expressed as

e(q(t),χ(t), t) ≤ 0. (3.20)

It should be noticed that, although (3.20) describes inequality constraints, the consider-
ations made in this section are not limited to this kind of constraints. In fact, since the
considered inequalities are nonstrict, it is always possible to put equality constraints in
the form (3.20) with some suitable manipulation.

Considering the vector of feature coordinates, the system of all constraints acting on
the robot can be expressed as{

f q,χ(q(t),χ(t)) = 0 natural constraints
e(q(t),χ(t), t) ≤ 0 artificial constraints

, (3.21)

where the natural constraints now describe position closure equations depending on q
and χ. Another way of writing (3.21) is{

f(q(t))− g(χ(t)) = 0 natural constraints
e(q(t),χ(t), t) ≤ 0 artificial constraints

, (3.22)

with g : χ ∈ X ⊆ R6 → p ∈ P ⊆ Rp, g(χ(t)) = p(t). Accordingly, the first-order
differential constraints can be written as{

Jq̇ − Jχχ̇ = 0

Eqq̇ +Eχχ̇+ et ≤ 0
, (3.23)

with Jχ = ∂g
∂χ
∈ R6×6, and Eχ = ∂e

∂χ
∈ Rm×6. Therefore, the constraint matrix (3.9)

becomes

M c =

 J −Jχ

Eq Eχ

 ,
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Figure 3.2: Application setup (left) and a possible VKC (right) for the laser tracing
application.

and the system (3.23) can be brought to the form (3.16) by defining the constraint
Jacobian matrix as

J c =
(
Eq +EχJ

−1
χ J

)
. (3.24)

In the original work by De Schutter, De Laet, et al. (2007), the feature coordinates
are defined after introducing a set of reference frames in which to express relative motions
of the objects involved in a certain task. However, by looking at the (3.22) and (3.23), it
is easy to think of feature coordinates as the joints of a 6-DoFs Virtual Kinematic Chain
(VKC), characterized by forward kinematic function g(χ) and (analytical) Jacobian
Jχ(χ). The idea of VKCs has been extensively exploited within the iTaSC framework
and other later works (Kresse and Beetz 2012; Vanthienen, De Laet, et al. 2012), since it
allows to link the specification and the execution of a task to the definition of a (virtual)
kinematic structure that simply needs to be controlled in the joint space. This strategy
is illustrated in Fig. 3.2 for a laser tracing application. In this case, the vector of feature
coordinates χ = [χ1 . . . χ6] can be chosen such that χ1 and χ2 represent the x and y

coordinates (in a suitably chosen coordinate system fixed to the work table) of the point
located at the intersection of the laser beam with the work table, Pi. Therefore, the first
two joints of the associated VKC are prismatic, allowing translation along the x and y
direction, respectively. The coordinates χ3 – χ5 can instead be chosen so as to form a
3-DoFs spherical joint. That allows a full reorientation of the last joint of the VKC,
which is chosen as a prismatic joint with the sliding axis along the direction of the laser
beam.

The employment of a VKC surely helps visualizing the elementary translations/rotations
describing the pose of the PoC according to the specific feature coordinates definition.
Even more importantly, a suitable definition of the VKC (or, equivalently, of the feature
coordinate set) can significantly simplify the expression of the artificial constraints. As
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Algorithm 3.1 Fulfillment of the position closure equation in case of VKCs

1:

a solution q̇ is computed for a robot with joint configuration qprev,

which corresponds to a value χprev of the feature coordinate vector


2: qnext = qprev + T q̇

3: χ̇ = J−1
χ (χprev)J(qprev)q̇

4: χnext = χprev + T χ̇
5: repeat
6: ∆p = compute_displacement(f(qnext), g(χnext))
7: χ̇ = J−1

χ (χnext)∆p

8: χnext = χprev + T χ̇
9: χprev = χnext

10: until f(qnext)− g(χnext) = 0

an example, assuming for the laser tracing application a desired target point Pd(xd, yd, 0),
the artificial constraints describing the task can be simply written as{

χ1 − xd = 0

χ2 − yd = 0
.

On the other hand, VKCs reveals some of the critical issues of using feature coordinates.
In fact, great care is generally necessary when choosing the six feature coordinates for a
given robot application, as they must be always representative of the 6-DoFs PoC pose.
Moreover, even meaningful sets might contain representation singularities, i.e., specific
values of one or more coordinates for which the PoC pose is no longer uniquely defined
by the chosen set. In the laser tracing example, this is the case when χ4 = 0 ± kπ,
k ∈ Z, i.e., when the laser beam is parallel to the work table. This corresponds to a
well-known singularity of spherical joints. Indeed, considering the parallelism between
feature coordinates and VKCs, it should be noticed that a representation singularity of
the feature coordinates actually corresponds to a singular configuration of the associated
VKC. In such configuration, the Jacobian matrix Jχ loses rank, and its inversion in
(3.24) is no longer possible.

Another drawback in handling the task execution through VKCs derives from the
additional computational burden that is typically required to ensure that the natural
constraints in (3.22) hold at every instant of time. In fact, while (3.23) allows to compute
a solution q̇ and, thus, to obtain the value of the VKC joint velocity χ̇, numerical
integration is needed in practice to update the value of q and χ at a given time. As the
solution of such operation suffers from numerical drift, multiple steps might be necessary
to make sure that the position closure equation in (3.22) actually holds. To give a better
idea, Alg. 3.1 shows a simple method that is typically employed to implement such steps.
The method is based on forward Euler integration (performed at a sampling time T ) and
Newton-Raphson iterations.

Compared to the iTaSC formulation, the framework proposed in Sect. 3.3.1 could
be seen as a special case in which a specific set of coordinates returns a differential task
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description where Jχ = I. However, this special case offers several benefits. Indeed,
resorting to Cartesian coordinates provides a singularity-free representation of the PoC
pose and velocity. As a result, the computation and the consequent inversion of an
additional Jacobian matrix is avoided. Moreover, no additional computational steps
are necessary to ensure the fulfillment of the position closure equations. On the other
hand, the artificial constraints might present more complex expressions when Cartesian
coordinates are employed. Recalling the geometric constraints formulated for the laser
tracing application in Sect. 2.2.1, for example, the artificial constraints for this case
study can be written as

null(dT (p)) · (P (p)− Pd) = 0, (3.25)

with P and d being the point and the unit direction defining the laser beam line, respec-
tively, and p indicating a PoC fixed to the laser device. In this work, however, artificial
constraints are automatically generated out of the symbolic task descriptions (see lower
level API in Fig. 2.11). Furthermore, their differentiation can be performed using auto-
matic differentiation techniques (Rall 1981). Thus, the complexity of their mathematical
expression is not considered a crucial aspect. Finally, another important aspect that can
be noticed in the expression of (3.25), is that the formulation of artificial constraints in
the presented framework does not depend on the selection of special reference coordinate
systems.

Following similar considerations, Bartels, Kresse, et al. (2013) had already proposed
a constraint-based task description favoring the use of Cartesian coordinates, as opposed
to the employment of VKCs. However, their work focused on describing the spatial re-
lationship between a robot tool and a fixed object to be manipulated. In other words,
indicating with p and pO the pose of the robot tool and the manipulated object, respec-
tively, the artificial constraints considered in their work can be expressed as

c(p,pO)− cd(t) ≤ 0,

where cd is a vector of set values for the function c : (p ∈ P ,pO ∈ P)→ c(p,pO) ∈ Rm.
The assumption of fixed manipulated object yields ṗO = 0. Therefore, at the first-order
differential level the system of natural and artificial constraints can be written as{

Jq̇ − v = 0

Cpv − ċd ≤ 0
, (3.26)

where Cp =
∂c
∂p
T ′ ∈ Rm×6. It can be noticed that (3.26) is just a special case of (3.15).

To overcome the drawbacks related to VKCs, Aertbeliën and De Schutter (2014) have
more recently proposed a new constraint-based task formulation within the eTaSL/eTC
framework, which hides the closure equations contained in the natural constraints. The
definition of the VKC is therefore avoided, while a suitable number of feature coordi-
nates is only used when beneficial to the simplification of the expression of the artificial
constraints. In other words, artificial constraints are expressed in the form

e(q(t),χ′(q(t)), t) ≤ 0, (3.27)
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where χ′ ∈ X ′ ⊆ Rnχ′ , with nχ′ being an arbitrary number of feature coordinates suitably
chosen to simplify the expression of (3.27), without being necessarily related to a VKC.
Differentiating (3.27) yields

Eqq̇ +Eχ′χ̇′ + et ≤ 0, (3.28)

where Eχ′ = ∂e
∂χ′ ∈ Rm×nχ′ . Equation (3.28) is then rewritten in matrix form as

Eξξ̇ ≤ rvt , (3.29)

by imposing Eξ = [Eq Eχ′ ], ξ = [qT χ′T ]T and rvc = −et. Finally, (3.29) is solved by
setting up the optimization problem

min
ξ̇

1

2
ξ̇
T
Hξ̇, H ≥ 0

s.t. Eξξ̇ ≤ rvt

. (3.30)

It can be noticed that, although avoiding the employment of VKCs while preserving the
benefits of feature coordinates, the result of this modeling procedure is in an optimiza-
tion problem that minimizes a weighted combination of joint and feature coordinates.
Additionally, a third set of (slack) variables are added in the work by Aertbeliën and
De Schutter (2014) in order to handle constraints with lower priority. Such a complex
combination of variables will most likely present mixed units, degrading the physical
meaning of the cost function (Lachner, Schettino, et al. 2020), and making a thorough
tuning of the weights in H necessary. Such tuning should at the same time preserve the
positiveness of H , while sufficiently regularizing the optimization problem. Moreover,
the possibility of generating robot joint motion that respects the underlying physics of
the robotic system is totally excluded by the optimization problem (3.30). Indeed, the
generation of dynamically consistent robot motion requires the selection of a cost func-
tion with specific decision variables and weight matrix (Osorio and Allmendinger 2022),
which is not compatible with the cost definition in (3.30). The proposed modeling proce-
dure from Sect. 3.3.1, on the other hand, results in an optimization problem minimizing
a weighted combination of the joint variables only. The possibility of having mixed units
is therefore significantly reduced. Furthermore, if the robot inertia matrix is available,
it is always possible to ensure dynamical consistency of the generated robot motion by
a suitable definition of the matrix H , as also shown in Chap. 4.

3.3.3 Extension to multiple robots and PoCs

Re-elaborating the steps in Sect. 3.3.1 in a more general context, it is possible to consider
the case in which a set of artificial constraints involves multiple PoCs. In the most general
case, these could be fixed to the same robot body or to different bodies. Furthermore,
different robots might be also involved. This case is of particular interest in the context
of collaborative multi-robot applications. Thus, this section aims at generalizing the
constraint-based task formulation from Sect. 3.3.1 to the case of multiple robots having
multiple PoCs.
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Figure 3.3: Multiple robots with multiple PoCs.

Let R be the number of robots involved in a certain set of artificial constraints, and
qr be the joint coordinate vector of the rth robot, with r = 1, . . . , R. Furthermore,
let Kr be the number of PoCs belonging to the rth robot, and prk be the coordinate
vector describing the pose of the kth PoC on the rth robot, with k = 1, ..., Kr (Fig. 3.3).
Without loss of generality, let consider the case in which the set of artificial constraints
is composed merely by equality constraints. Thus, the system of natural and artificial
constraints can be written as

f 11(q1)− p11 = 0 natural constraints Robot 1 – PoC 1
...

f rk(qr)− prk = 0 natural constraints Robot r – PoC k
...

fRKR
(qR)− pRKR

= 0 natural constr. RobotR – PoC KR

e(q1, . . . , qR,p11, . . . ,pRKR
, t) = 0 artificial constraints

,

where f rk(·) is the forward kinematics function mapping the joint coordinates qr to the
PoC coordinates prk. Consequently, the set of first-order differential constraints is

J11q̇1 − v11 = 0
...

J rkq̇r − vrk = 0
...

JRKr q̇R − vRKr = 0

Eq1 q̇1 + · · ·+EqR q̇R +Ep11v11 + · · ·+EpRKR
vRKR

= −et

, (3.31)

where J rk is the Jacobian matrix of the rth robot related to the PoC prk mapping
the joint velocity q̇r to the PoC velocity vrk. The system of equations (3.31) can be
expressed in matrix form as

M ′
c

q̇
v

 =

 0

−et

 ,
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where q̇ =
[
q̇T
1 . . . q̇T

r . . . q̇T
R

]T
, v =

[
vT
11 . . . vT

rk . . . vT
RKR

]T
, and

M ′
c =




J11

...

J1K1

 0 0


−I 0 0

0
. . . 0

0 0 −I

 0 0

0
. . . 0 0

. . . 0

0 0


JR1

...

JRKR

 0 0


−I 0 0

0
. . . 0

0 0 −I


Eq1 . . . EqR Ep11 . . . EpRKR



. (3.32)

Analyzing (3.32), it is possible to recognize that the constraint matrix M ′
c can be brought

to the form (3.9) by setting

J =




J11

...

J1K1

 0 0

0
. . . 0

0 0


JR1

...

JRKR




,

Eq =
[
Eq1 . . . EqR

]
Ep =

[
Ep11 . . . EpRKR

]. (3.33)

Moreover, it can be noticed that every robot involved in the artificial constraints
extends the matrix J by introducing an element on its (block) diagonal. Additionally,
an element is concatenated column-wise to the matrix Eq. On the other hand, the rth
block on the diagonal of J consists of the concatenation of the Kr Jacobian matrices
associated to the rth robot. Every PoC involved in the artificial constraints additionally
adds an element to the matrix Ep. From these considerations, basic rules can be derived
to construct the matrices in (3.33) for a given task. Once this operation is completed, it
is possible to compute the constraint Jacobian matrix as seen in Sect. 3.3.1 for the case
of a single robot with one PoC, namely

J c = (Eq +EpJ).

The constraint reference velocity (or the velocity upper bound, in the case of inequality
constraints) can also be computed as in Sect. 3.3.1. This procedure allows to handle task
specifications involving an arbitrary number of robots and PoCs in a unified manner.
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3.3.4 Acceleration-level formulations

The previous sections have presented a systematic procedure to generate quadratic opti-
mization problems out of constraint-based task descriptions involving an arbitrary num-
ber of robots and PoCs. The method relies on the first-order differential relations de-
scribing natural and artificial constraints of the given robot(s). As a consequence, the
resulting optimization is performed at velocity level, meaning that the final output con-
sists of joint velocities. Although this methodology may seem attractive in terms of
effectiveness and mathematical simplicity, considering a second order task formulation
might present some advantages. In fact, performing the optimization at acceleration
level may generate smoother robot motions. Moreover, an evolution of the task function
as a second order system might be of interest.

An acceleration-level specification composed by equality constraints simply requires
a further time differentiation of (3.11). This operation yields

J cq̈ + J̇ cq̇ = rac , (3.34)

where the constraint reference acceleration, rac = −∂et
∂t

, can be modified to impose a
desired evolution of the task function. For example, the choice (De Luca, Oriolo, et al.
1992)

rac = −
∂et

∂t
−Dė−Ke, D,K ≥ 0

imposes an evolution of the task function as a second-order linear system characterized
by stiffness K and damping D. Analogously, for inequality constraints (3.16) becomes

J cq̈ + J̇ cq̇ ≤ rac , (3.35)

with the constraint acceleration upper bound, rac = −∂et
∂t

, that can be modified to impose
a specific behavior to the task function. Considering the constraints (3.34) and (3.35),
the joint motion that makes the robot fulfill the given task can be computed in terms of
joint acceleration. More specifically, the optimization problem (3.19) can be rewritten
at acceleration level as

min
q̈

1

2
q̈THq̈, H ≥ 0

s.t. J eq,cq̈ + J̇ eq,cq̇ = rac ,

rac ≤J iq,cq̈ + J̇ iq,cq̇ ≤ rac

. (3.36)

In case of torque-controlled robots, another option often of interest is to solve (3.34)
and (3.35) at torque-level, i.e., to generate robot motion in terms of generalized joint
torques. This is achieved by recalling the joint space dynamic model of a robot

M(q(t))q̈(t) + c(q(t), q̇(t)) + g(q(t)) = τ (t), (3.37)

where M ∈ Rn×n is the positive definite robot inertia matrix, c ∈ Rn is the vector of
joint Coriolis and centrifugal torques, g ∈ Rn is the vector of the joint gravity torques,
and τ (t) is the vector of joint driving torques. Using (3.37), it is possible to express the
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robot joint acceleration as q̈ = M−1(τ − c − g). Thus, defining τ ′ = τ − c − g, the
constraints (3.34) and (3.35) can be rewritten as

J cM
−1τ ′ + J̇ cq̇ = rac

J cM
−1τ ′ + J̇ cq̇ ≤ rac

,

and the optimization problem (3.36) can be defined at torque-level as

min
τ ′

1

2
τ ′THτ ′, H ≥ 0

s.t. J eq,cM
−1τ ′ + J̇ eq,cq̇ = rac ,

rac ≤ J iq,cM
−1τ ′ + J̇ iq,cq̇ ≤ rac

. (3.38)

The solution of both the optimization problems (3.36) and (3.38) is thoroughly discussed
in Chap. 4, in which a general framework for motion control of redundant robots is
presented.

3.4 Simulations

This section presents a set of simulations that numerically supports the validity of the
proposed constraint-based programming framework. First, two illustrative examples
practically show how the method introduced in Sect. 3.3.1 and Sect. 3.3.3 can be
effectively employed to generate a robot motion fulfilling a certain set of constraints.
Then, the three case studies from Sect. 2.2 are analyzed. The results are obtained using
different kinds of kinematic chains, as well as considering task-descriptions involving
multiple robots and multiple PoCs.

3.4.1 Illustrative Examples

A. Single robot, single PoC

The first example involves a KUKA LBR iiwa 7-DoFs manipulator (Fig. 3.4). The task
consists in keeping the tip of the robot tool (the orange cone attached to the robot flange)
within a certain time-varying distance range from a moving reference point.

The point on the tool tip is indicated by P (x, y, z), whereas Pd(xd, yd, zd) indicates the
reference point. Moreover, dd ∈ R+ is the maximum Euclidean distance that is desired
between the two points. The position of the point P can be expressed as a function of
a an arbitrary PoC frame p = [xp yp zp η ϵx ϵy ϵz]

T , fixed to the last robot body.
Thus, the task can be expressed by the inequality constraint

e(p, t) < 0, (3.39)

with
e(p, t) = ∥P (p)− Pd(t)∥2 − dd(t). (3.40)
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Figure 3.4: Motion sequence of the KUKA LBR iiwa robot in the simulation of Sect.
3.4.1-A.

To simplify the mathematical expressions of this section, p is placed at P (i.e., xp = x,
yp = y and zp = z), with an arbitrary orientation. Thus, (3.40) can be rewritten as

e(p, t) =
√
(xp − xd(t))2 + (yp − yd(t))2 + (zp − zd(t))2 − dd(t),

from which it is straightforward to calculate

Eq = 0

Ep =

[
xp − xd

∥P − Pd∥2
yp − yd
∥P − Pd∥2

zp − zd
∥P − Pd∥2

0 0 0

]
et =

xd − xp

∥P − Pd∥2
ẋd +

yd − yp
∥P − Pd∥2

ẏd +
zd − zp
∥P − Pd∥2

żd − ḋd

. (3.41)

Using (3.41), it is possible to compute the constraint Jacobian matrix and the con-
straint velocity upper bound. Therefore, an optimization problem of the form (3.18) can
be set up to compute the robot motion. In particular, the simulation of this section
has been carried out with H = I, whereas the velocity upper bound has been defined
as in (3.17), with a scalar gain K = kI and k = 5. This choice of k is based on the
simulation cycle time and the initial value of the task function, and ensures a transient
response of the task function that is compatible with the dynamical limits of the robot.
The simulation cycle time is 5ms, whereas the total simulation time is 7 s. The position
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Figure 3.5: Task function value (top) and joint velocity (bottom) obtained in the simu-
lation of Sect. 3.4.1-A.

of the reference point Pd varies on a linear path with sinusoidal velocity profile, namely

xd(t) = xd,0 + APd
sin

(
2πt

Td

)
yd(t) = yd,0 + APd

sin

(
2πt

Td

)
zd(t) = zd,0 + APd

sin

(
2πt

Td

) ,

with xd,0 = yd,0 = zd,0 = 0.5m, APd
= 0.1m and Td = 2.5 s. The maximum distance dd

also varies with a sinusoidal law as

dd(t) = dd,0 + Addsin

(
2πt

Td

+
π

2

)
,

with dd,0 = 0.1m and Add = 0.05m.
Figure 3.4 shows the obtained robot configuration for some instants of time. In each

picture, the light blue sphere represents the position of Pd (center of the sphere) and the
value of dd (radius of the sphere) for the considered instant of time. Therefore, for the
constraint (3.39) to be satisfied, the tip of the robot tool should always be inside the
sphere. However, this condition is not satisfied at the initial time t = 0 s. Nevertheless,
the specification of the constraint upper velocity bound as in (3.17) allows the robot to
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bring the tool tip inside the cone at t = 0.8 s. This can also be seen in the top plot of
Fig. 3.5. After the initial recovery phase, the constraint remains fulfilled (e < 0) for the
remainder of the motion. The (exponential) recovery rate depends from the chosen value
of k. Figure 3.5 additionally reports the obtained joint velocity commands. It can be
noticed that joint motion is produced also when the constraint is satisfied. This happens
every time the task function would approach the zero value faster than the provided
exponential convergence rate, as a consequence of the choice (3.17).

B. Multi-robot, multi-PoC

The second illustrative example is a simulation involving multiple robots (Fig. 3.6). The
first robot (robot 1) is a 17-DoFs mobile dual-arm system, composed of an omnidirec-
tional mobile base and two KUKA LBR iiwa robots. Both arms present a conical tool as
the one in Sect. 3.4.1-A. The two points at the tip of the cones are indicated as P11 and
P12. Their position can be expressed with respect to two PoC frames, p11 and p12, each
fixed to the corresponding tool. As in Sect. 3.4.1-A, the PoC frames are conveniently
placed at the tool tip. The second robot (robot 2) consists of a KUKA DKP 400 2-DoFs
pan-tilt table. Here the center point of the table is of interest. This is indicated as P2

and expressed as a function of the PoC frame p2, placed in P2. The third robot (robot 3)
is a KUKA AGILUS 6-DoFs manipulator, also equipped with a conical tool. The point
at the tip of the tool is indicated as P3 and expressed with respect to the PoC frame p3,
placed in P3.

The task is expressed by the following set of equality constraints:

e(q2,p11,p12,p2,p3, t) =


e1(q2, t)

e2(p11,p12,p2)

e3(p12,p3,p2)

 = 0, (3.42)

with

e1 = q2,1 − q2,1,d(t)

e2 = ∥P11(p11)− P2(p2)∥2 − ∥P12(p12)− P2(p2)∥2
e3 = ∥P12(p12)− P2(p2)∥2 − ∥P3(p3)− P2(p2)∥2

, (3.43)

where q2,1 is the first element of q2 and q2,1,d a desired trajectory for the corresponding
joint. In other words, it is required that the tool points P11, P12, and P3 have the same
distance from the pan-tilt table center point, P2, whose position varies over time as a
result of the desired trajectory assigned to the first joint of robot 2. This is chosen as

q2,1,d(t) =
π

4
cos(t). (3.44)

Figure 3.6 gives a complete overview of all the variables involved in the task specification.
Differentiating the task function in (3.42) – (3.43) with respect to the joint vector q =
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Figure 3.6: Overview of robots, PoC frames and variables involved in the task specifica-
tion of Sect. 3.4.1-B.

Figure 3.7: Motion sequence of the robots involved in the simulation of Sect. 3.4.1-B.

[
qT
1 qT

2 qT
3

]T
returns the matrix Eq =

[
Eq1 Eq2 Eq3

]
, where

Eq1 = 0, Eq2 =


1 0

0 0

0 0

 , Eq3 = 0.

The matrix Ep =
[
Ep11 Ep12 Ep2 Ep3

]
presents instead all zero elements on the first

row, while the remaining rows can be easily computed by differentiating the distance
function as in Sect. 3.4.1-A. For the sake of brevity, only the expression of Ep11 and Ep12



40 CHAPTER 3. CONSTRAINT-BASED PROGRAMMING

0 1 2 3 4 5 6 7

-0.4

-0.2

0

0.2

0 2 4 6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 2 4 6

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 2 4 6

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7

-0.2

-0.1

0

0.1

Figure 3.8: Task function value and joint velocities obtained in the simulation of Sect.
3.4.1-B.

are reported

Ep11 =


0 0 0 0

xp11

∥P11−P2∥2
yp11

∥P11−P2∥2
zp11

∥P11−P2∥2 0

0 0 0 0



Ep12 =


0 0 0 0

−xp12

∥P12−P2∥2
−yp12

∥P12−P2∥2
−zp12

∥P12−P2∥2 0

xp12

∥P12−P2∥2
yp12

∥P12−P2∥2
zp12

∥P12−P2∥2 0


.
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Figure 3.9: Motion sequence of the KUKA AGILUS robot in the first simulation of Sect.
3.4.2-A.

The vector et is finally obtained differentiating (3.43) with respect to the time. This
operation yields

et =


q̇2,1,d

0

0

 .

The simulation is performed using a matrix H = I. The constraint reference velocity
is defined as in (3.13) with K = kI, k = 2. The total simulation time is 7 s, with a
cycle time of 5ms. Figure 3.7 shows the resulting sequence of motion. In each picture,
the three spheres represent the distance of the points P11, P12, and P3 from P2, which
is the center of all the spheres. At the initial time t = 0 s, the spheres have different
radii, indicating that the constraints (3.42) – (3.43) are not satisfied. However, thanks
to the specified constraint reference velocity the robots achieve fulfilment of the given
constraints at about t = 2 s. This is indicated by the three spheres overlapping and
becoming indistinguishable from this time on. At the same time, the first joint of the
pan-tilt table moves according to the specification (3.44). The obtained results can be
analyzed in Fig. 3.8, which reports the trend of the task function and the computed
joint velocities for all the involved robots.

3.4.2 Case Studies

A. Laser tracing

For the laser tracing case study, the application setup is shown in Fig. 3.9. The task
involves a KUKA AGILUS 6-DoFs manipulator and consists of tracing the segment AB
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Figure 3.10: Task function value (top) and joint velocity (bottom) of the KUKA AGILUS
robot obtained in in the first simulation of Sect. 3.4.2-A.

from A to B and back. The entire tracing should happen in a given time of 7 s, following
trapezoidal velocity profiles. As anticipated in Sect. 3.3.2, the task formulation involves
one PoC frame p fixed to the laser device, and can be expressed as

e(p, t) = 0, (3.45)

with

e(p, t) =

e1(p, t)
e2(p, t)

 = null(dT (p)) · (P (p)− Pd). (3.46)

The simulation is performed using a matrix H = I and a constraint reference velocity
defined as in (3.13), with a gain matrix K = kI, k = 25. The simulation cycle time is
1ms. The evolution of the task function and the obtained joint velocities can be analyzed
in Fig. 3.10.

A second laser tracing simulation, this time involving a KUKA LBR iiwa 7-DoFs
robot, is introduced in Fig. 3.11. The task consists of tracing three different segments
with three laser devices, all mounted at the robot flange. In this particular scenario,
the identification of a suitable sequence of desired Cartesian frames for the end effector
would require a huge engineering effort, making this application practically impossible
to program with classic methods. Nevertheless, the proposed framework allows (with a
single PoC frame fixed to the laser devices) to easily write the constraint set describing
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Figure 3.11: Motion sequence of the KUKA LBR iiwa robot in the second simulation of
Sect. 3.4.2-A.
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Figure 3.12: Task function value (top) and joint velocity (bottom) of the KUKA LBR
iiwa robot in the second simulation of Sect. 3.4.2-A.
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Figure 3.13: Overview of robots, PoC frames and geometric entities involved in the task
specification of Sect. 3.4.2-B.

the task. This can be simply derived by extending (3.45)–(3.46). All the parameters
remain unchanged from the previous simulation. The trend of the task function value
and the obtained joint velocities for this simulation are reported in Fig. 3.12.

B. Multi-robot welding

For the welding case study, a multi-robot application is considered. The welding torch
is attached to the flange of a KUKA AGILUS 6-DoFs robot, while the parts to weld are
mounted on a KUKA DKP 400 2-DoFs pan-tilt table. Figure 3.13 shows the application
setup, as well as an overview of all the geometric entities and PoC frames involved in the
task formulation. In this particular case, the tip of the welding torch, indicated by P , is
required to track a time-varying target point, Pd, which moves on a sequence of desired
paths (green segments) with trapezoidal velocity profiles. As presented in Sect. 2.2.2,
an additional constraint on the angle between the welding torch main axis, L, and the
working plane, Π, exists. In this case, the working plane is considered as a virtual plane
fixed to robot 2, which embeds the target paths. Thus, the task specification (2.4) can
be formulated as

{
eeq,1−3(p1,p2) = 0

eiq,4(p1,p2) ≥ 0
,
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Figure 3.14: Motion sequence of the robots involved in the simulation of Sect. 3.4.2-B.

with

eeq,1−3 =


eeq,1

eeq,2

eeq,3

 = P − Pd

eiq,4 = asin(dL · nΠ)− αmin

,

where dL and nΠ are defined as in Sect. 2.2.2.
For the simulation of this section, it is αmin = π/3 rad. Furthermore, constraint

reference velocities are generated according to (3.13), with a gain keq = 5. Similarly, the
velocity upper bound for the inequality constraint on eiq,4 are generated according to
(3.17), with a gain kiq = 3. The total simulation time is 9 s, with a cycle time of 5 ms.
Finally, the optimization problem uses H = I.

Figure 3.14 reports the obtained sequence of motion for the two robots. In each
picture, the cone with apex in Pd and apex angle 2(π/2−αmin) helps visualizing whether
the constraint on the angle between L and Π is fulfilled. As an additional visual support,
the cone is colored in green when the condition on the angle is met, in red otherwise. At
the initial time t = 0, the constraint is not satisfied. However, thanks to the definition of
a constraint velocity upper bound as in (3.17), the robots are able to recover the initial
gap. Indeed, they start fulfilling the angle constraint at about 2.2 s and keep respecting
it throughout the rest of the motion. This can also be seen in the top plot of Fig. 3.15.
After an initial recovery phase, all the constraint remains fulfilled for the remainder of the
motion. Figure 3.15 additionally reports the obtained joint velocity for the two robots.
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Figure 3.15: Task function value (top) and joint velocities (bottom) obtained in the
simulation of Sect. 3.4.2-B.

C. Deburring

For the third case study, the deburring tool from Sect. 2.2.3 is attached to the flange
of a KUKA LBR iiwa 7-DoFs robot, while the workpiece is fixed to the environment.
Figure 3.16 shows the application setup, as well as an overview of the main geometric
entities and PoC frames involved in the task formulation according to the specification
(2.6). This can be expressed by the following set of constraints:



eeq,1−2 = 0

eeq,3 = 0

eeq,4 = 0

eiq,1 ≥ 0

eiq,2 ≤ 0
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Figure 3.16: Overview of robots, PoC frames and geometric entities involved in the task
specification of Sect. 3.4.2-C.

with

eeq,1−2 =

eeq,1
eeq,2

 = null(dT
L(p)) · dP1P2

eeq,3 = nΠ1 · (P (p)− PΠ1)− r

eeq,4 = nΠ2 · (P (p)− PΠ2)

eiq,1 = nΠB
(p) · (Pm − PΠB

((p)))− l

2

eiq,2 = nΠB
(p) · (Pm − PΠB

((p)))− h+
l

2

. (3.47)

All the quantities in (3.47) are defined as in Sect. 2.2.3.
The simulation is carried out with H = I, whereas the total simulation time is

7 s, with a cycle time of 5ms. Constraint reference velocities and velocity lower/upper
bounds are again defined in order to ensure exponential behavior of the task function,
with scalar gains keq = kiq = 2.

Figure 3.17 shows the generated robot motion. Once again, the specified constraints
are not fulfilled at the initial time t = 0, but the robot accomplishes an (exponential)
recovery of the initial error. This is also visible in the top plots of Fig. 3.18, where the
evolution of all the task function components is reported, along with the generated joint
velocities.
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Figure 3.17: Motion sequence of the KUKA LBR iiwa robot in the simulation of Sect.
3.4.2-C.

0 1 2 3 4 5 6 7

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 1 2 3 4 5 6 7

-0.02

-0.01

0

0.01

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

Figure 3.18: Task function value (top) and joint velocities (bottom) obtained in the
simulation of Sect. 3.4.2-C.
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3.5 Discussion
This chapter has presented a general framework for the constraint-based programming
of redundant robots. The proposed formulation supports the intuitive task specification
introduced in Chap. 2 and presents a significant versatility. Indeed, it can handle single
and multi-robot applications in a unified fashion, as well as handling multiples PoCs
for each robot. The generality of the framework is enhanced by the fact that classic
programming based on Cartesian frames can be obtained as special case, as it is for
joint motion commands. Furthermore, the proposed methodology has also be shown to
overcome some limitations of existing constraint-based programming frameworks.

The effectiveness of the framework has been proved through a set of simulations,
in which complex tasks are executed with very limited programming efforts, addition-
ally optimizing redundant DoFs. Particularly significant examples are the multi-laser
tracing application from Sect. 3.4.2-A and the multi-robot welding from Sect. 3.4.2-B.
Programming such tasks with Cartesian frames would require a huge engineering effort,
and eventually lead to suboptimal solutions.

Additional work on the framework could focus on how to properly include force con-
straints in the proposed formalism for task description. The explicit consideration of
uncertainties coming from the environment and/or sensor data is also a missing fea-
ture in the current formulation. In any case, sensitivity to possible measurement noise
affecting task variables can be controlled by acting on the gain in (3.13) and (3.17).
Finally, effective handling of possible conflicting constraints or strategies to avoid that
such conflicts arise represent other open research fields.
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Chapter 4

Redundancy Resolution

4.1 Introduction

Redundancy resolution is defined as the problem of selecting a specific robot posture
among a set of (likely infinite) possible solutions accomplishing a given task. This prob-
lem, extensively studied in the last decades, becomes especially relevant when dealing
with robots with a large number of DoFs, or in the case of collaborative multi-robot
applications, as also remarked in Chap. 3.

Redundancy allows for more versatility in performing an assigned task and for the
simultaneous specification of multiple objectives. However, proper strategies are required
to compute suitable joint motions and achieve effective exploitation of the redundant
DoFs.

As seen in the previous chapters, tasks can consist of equality or inequality con-
straints. Additionally, they might also present different priority based on their respec-
tive relevance. For example, safety-related tasks, such as avoiding collision with the
environment, may be considered of utmost importance and therefore assigned the high-
est priority. Furthermore, the robots might be required to autonomously operate in
unstructured environments. For this reason, redundancy resolution algorithms are often
designed to find solutions online and to include robust and predictable behavior in case
the assigned tasks become unfeasible altogether due to some change in the environment.
Finally, when considering robots with a high number of DoFs, also the computational
efficiency becomes considerably important.

In the previous chapter, the formulation of tasks for redundant robots has led to the
derivation of constrained optimization problems, which should be solved to obtain an
optimal robot posture at each instant of time. All the optimization problems presented
in Sect. 3.3.1 and 3.3.4 share a similar structure, consisting of a quadratic cost function
and linear (equality and inequality) constraints. Thus, this chapter focuses on general
methods to solve such class of constrained optimization problems in the context of robot
motion control. Additionally, some critical aspects originating from the discrete-time
implementation of the solver are analyzed.

51
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4.2 Related Work

Robots with a large number of DoFs have seen an increasing demand in industrial ap-
plications and service robotics in recent years. From industrial manipulators (Scheurer,
Fiore, et al. 2016) up to humanoid robots (Escande, Mansard, et al. 2014) and unmanned
vehicles (Antonelli 2014; Baizid, Giglio, et al. 2015), robots are more and more often de-
signed to be highly redundant, i.e., to have significantly more DoFs than are needed to
perform a given task.

Redundancy resolution methods have been extensively studied for decades. Using
the first-order differential kinematic model of the robot, Whitney (1969) first introduced
a method for solving a single-task problem based on a minimum-norm solution. A task
priority approach exploiting null space projection was then presented by Maciejewski
and Klein (1985) for two tasks and later extended to a generic number of tasks by
Siciliano and J.-J. Slotine (1991). Similar approaches have been developed at acceleration
level, using the second-order differential kinematic model (De Luca, Oriolo, et al. 1992).
The exploitation of the robot dynamical model has instead led to the Operation Space
Formulation (Khatib 1983) and its extension to prioritized tasks (Dietrich and Ott 2019;
Ott, Dietrich, et al. 2015; Sentis and Khatib 2004).

In all the above-mentioned contributions, the tasks assigned to the robotic system
consist of a set of equality constraints. However, several tasks may be naturally described
as inequality constraints. Handling of inequality constraints has been tackled in different
ways. Most methods are based on pseudoinversion of task Jacobian matrices and null
space projections, and here referred to as analytical. An early approach in this class
of methods is represented by the Gradient-Based Projection (GBP) method (Liegeois
et al. 1977), in which inequalities are converted into a cost function. Robot redundancy
is then exploited to minimize such cost, in the attempt of keeping the task variables
within their allowed range. However, the optimization is performed at a lower priority
level, meaning that fulfillment of the inequality constraints is not guaranteed. Another
simple, yet effective, approach is to perform task scaling (Antonelli, Chiaverini, et al.
2003; Chiacchio and Chiaverini 1995; Hollerbach 1983), i.e., to reduce the speed (or
acceleration) required by equality constraint task commands to recover feasibility with
respect to one or more violated inequality constraints. One benefit of the task scaling
method is that the directions of the equality constraints task commands are preserved.
The execution of such commands is only extended in time, which is in many cases
acceptable. Furthermore, task scaling can easily be applied to the case of prioritized
tasks and provides the robot with a predictable behavior in case of conflict between
equality and inequality constraints. On the other hand, the mere use of this technique
implies slower task execution every time an inequality constraint would be violated.
Before resorting to such a drastic measure, one should first verify that no alternative
joint motions exist, which can ensure the satisfaction of both equality and inequality
constraints.

Another widely adopted approach is to convert inequality constraints into equivalent
equality constraints. To avoid overconstrained motions, these additional equality con-
straints can only be added to the set of prioritized tasks (often referred to as Stack of
Tasks (SoT)) with the lowest priority. Thus, the satisfaction of the original inequalities
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is not guaranteed (Khatib 1986). Alternatively, the satisfaction of inequality constraints
can be monitored, and the equivalent equality constraints inserted at the desired priority
level only when task inequality bounds are approached. A classic method in torque-based
redundancy resolution is to resort to artificial potential fields (Sentis and Khatib 2005),
in which virtual forces are used to push task variables away from the bounds of their
allowed range. The effectiveness of this method, however, strongly depends on the pa-
rameters that regulate the activation and the intensity of the repulsive virtual force
(Muñoz Osorio, Fiore, et al. 2018). Using a similar approach, methods for handling
inequality constraints in velocity-based schemes were developed by Mansard, Khatib,
et al. (2009) and Moe, Antonelli, et al. (2016). Also in this case, special parameters are
introduced to define activation functions and thresholds, as well as to shape the functions
that force task variables to stay in a safe range. Furthermore, handling the continuous
activation/deactivation of the additional equality constraints may require parallel com-
putation of several possible solutions (Di Lillo, Pierri, et al. 2021; Moe, Antonelli, et al.
2016). Additionally, online modifications to the SoT typically produce discontinuities in
the solution (Sentis and Khatib 2005). Besides requiring more parameterization, meth-
ods to ensure smooth insertion to/removal from the SoT typically fail at respecting the
strict priority among the tasks during transitions (Mansard, Khatib, et al. 2009) or imply
a significant increase of the computational cost (J. Lee, Mansard, et al. 2012; Liu, Tan,
et al. 2016).

Given the above-mentioned limitations of analytical approaches in dealing with in-
equality constraints, numerical methods based on Hierarchical Quadratic Programming
(HQP) have been more intensively investigated in recent years (Aertbeliën and De Schut-
ter 2014; Escande, Mansard, et al. 2014; Hoffman, Laurenzi, et al. 2018; Kanoun, Lami-
raux, et al. 2011; Liu, Tan, et al. 2016; Quiroz-Omaña and Adorno 2019). The main idea,
first introduced by Kanoun, Lamiraux, et al. (2011), is to solve a cascade of Quadratic
Programming (QP) problems, one for each level of priority. Both equality and inequality
constraints can be easily specified in the context of QP at each priority level. Although
effective in fulfilling the given constraints, the technique suffered from a high computa-
tional cost, when compared to analytical solutions. This effect has been later mitigated
by formalizing the multiple QP problems in a single one and using complete orthogo-
nal decomposition to obtain the null spaces of the prioritized tasks (Escande, Mansard,
et al. 2014; Liu, Tan, et al. 2016). Another drawback of the mentioned solutions based
on HQP is that they do not feature a defined behavior in case a task is not feasible. In
fact, unfeasible tasks are normally handled through the introduction of slack variables
and/or by relaxing the constraints in a least square sense. However, such strategies do
not deliver a predictable robot behavior. On the other hand, in many robot applications
(especially in the industrial field) it is acceptable to just extend the execution of the
equality constraints over time, while preserving the task directions. In all these cases,
task scaling seems a more appropriate solution to recover feasibility.

The Saturation in the Null Space (SNS) algorithm (Flacco, De Luca, and Khatib
2015) for kinematic control provides a promising link between analytical methods and
HQP, while featuring a task scaling technique. Task prioritization uses null space pro-
jections as in analytical methods. At each level of priority, inequality constraints are
monitored and, if necessary, converted into equality constraints in a similar way as in
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(active-set) QP problems. Finally, a task scaling strategy is applied in all cases where it
was not possible to find a feasible solution. Although special variants of this algorithm
tackle additional important aspects like the optimality of the solution and the efficiency
of the computation, several points still remain unsolved. First, only joint space inequality
constraints are handled, which are always treated with the highest priority. Thus, oper-
ational inequality constraints, defined in task space and/or having lower priority are not
directly addressed. Moreover, the optimization process presents a simple cost function,
based on the idea of minimizing the pure joint velocity norm. Similarly to the work by
Escande, Mansard, et al. (2014), also the machinery used to speed-up the computation
(Flacco and De Luca 2013a) strongly relies on the consideration of such cost function.
However, joint velocity minimization has been shown to have drawbacks for robots whose
joint coordinates present mixed units, which is often the case when considering robots
with a large number of DoFs, e.g., mobile manipulators (Lachner, Schettino, et al. 2020).
This aspect is also essential in the context of energy-aware motion generation (Lachner,
Allmendinger, et al. 2021). Therefore, a proper redundancy resolution algorithm should
provide the possibility to select more appropriate metrics.

4.3 General Hierarchical Framework

Most of the solutions mentioned in Sect. 4.2 utilize velocity-based redundancy resolu-
tion, mainly because of its mathematical simplicity. However, moving to second-order
algorithms, i.e., acceleration or torque level, offers some advantages, e.g., enabling the in-
equality constraints to include maximum/minimum accelerations, and also improving the
noise, vibration and harshness (NVH) behavior of the robot. Torque-based approaches
additionally offer compliance, allowing the robot to safely handle physical contact. On
the other hand, these methods suffer from dynamic model uncertainties as pointed out
by Di Lillo, Antonelli, et al. (2021) and evidenced by some of the experimental results
presented in Sect. 4.3.5.

Velocity and acceleration-based models describe the robot using a kinematic equation
at velocity and acceleration level, respectively; the output of the control algorithm is then
a vector of joint velocities or accelerations, which are typically integrated to compute
joint positions that are then given as input to underlying joint position controllers. On
the other hand, a torque-based approach uses the dynamic model of the robot, and
outputs a vector of joint torques. These are then directly sent to joint actuators and an
actual control loop is closed using measured joint position and velocity.

This section presents a general framework for hierarchical redundancy resolution un-
der arbitrary (equality and inequality) constraints. A general formulation of the redun-
dancy resolution problem is proposed, which allows to express all of the aforementioned
redundancy resolution schemes (velocity-, acceleration- and torque-based) in a unified
form. The proposed generalized redundancy resolution problem is further developed to
specifically include arbitrary equality and inequality constraints on every priority level.
Furthermore, an additional input is considered, which allows for the specification of op-
timization criteria to better manage possible residual redundant DoFs. Having a unified
description of the redundancy resolution problem also allows for the design of a sin-
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gle solver. Here, a novel algorithm is introduced, named extended SNS (eSNS), which
builds on the SNS methodology extending it in many significant aspects. Being capable
of solving the proposed generalized redundancy resolution problem, the algorithm can
indistinctly handle velocity-, acceleration- or torque-based schemes. Moreover, arbitrary
inequality constraints can be managed at each level of priority. Finally, arbitrary met-
rics and additional inputs are considered in the optimization process when computing a
solution.

An analysis of the computational efficiency is also carried out, leading to a special
variant of the algorithm, named Fast-eSNS. Another variant (Opt-eSNS ) can be obtained
as a result of the analysis on the optimality of the solution and is also introduced in this
section. Finally, a novel shaping of the inequality constraint bounds is proposed, which
allows treating position, velocity and acceleration limitations in a unified way. The
parameterization of such shaping is consistent with the one typically used to define task
commands in equality constraints. Thus, it is based on the desired behavior of dynamic
systems and embeds a strong physical meaning. It is also shown that such shaping
represents an extension of the solutions proposed by Flacco, De Luca, and Khatib (2012,
2015) and by Osorio, Allmendinger, et al. (2019).

4.3.1 Mathematical Background

To introduce the formalism and the mathematical background on redundancy resolution,
some relevant findings from Chap. 3 needs to be briefly recalled.

In Sect. 3.3.1, the formulation of equality constraints (e = 0) in the constraint-based
programming framework has led to the following relation

J cq̇ = rvc , (4.1)

expressing the equality constraint at the first-order differential level. In (4.1), q̇ ∈ Rn is
the vector of joint velocities, J c = (Eq+EpJ) ∈ Rm×n indicates the constraint Jacobian
matrix, and rvc = −et ∈ Rm is the constraint reference velocity, with n ≥ m. Similar
constraints have been obtained at acceleration-level, namely

J cq̈ + J̇ cq̇ = rac , (4.2)

where rac = −∂et
∂t

represents the constraint reference acceleration. Finally, for torque-
controlled robots, the constraints (4.2) can be rewritten as

J cM
−1τ ′ + J̇ cq̇ = rac , (4.3)

with M and τ ′ defined as in Sect. 3.3.4). In addition to (4.3), constraints on the
maximum joint driving torque could also be of interest for this class of robots. Such
constraints can be expressed as:

τ (t) ≤ τ (t) ≤ τ (t). (4.4)

Section 3.3.2 has also discussed how the proposed formalism naturally embeds classic
inverse kinematics problems. In this case, it is Eq = 0 and Ep = I ∈ R6. Thus, a
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constraint Jacobian matrix J c = J is automatically returned. Analogously, a task could
also consist of pure joint space commands, in which case it is J c = Eq = I ∈ Rn.
This special case is often considered to track joint space references or to handle joint
limitations, i.e., to ensure that all joint positions (as well as velocities and accelerations)
stay within the allowed mechanical ranges.

Another important aspect in Chap. 3 is how rvc and rac can be modified to impose
a desired evolution of the task function e. In particular, it has been remarked how the
choice

rvc = −et −Ke, K > 0 (4.5)

imposes an evolution of the task function as a first-order linear system

ė+Ke = 0,

with a convergence rate depending on the eigenvalues of K. Analogously, choosing

rac = −
∂et

∂t
−Dė−Ke, D,K ≥ 0 (4.6)

imposes an evolution of the task function as a second-order linear system characterized
by stiffness K and damping D. Similar choices to (4.5) and (4.6) could also be used for
the specification of constraint velocity and acceleration lower/upper bounds, in order to
provide limit convergence rate in case of violation of inequality constraints. However,
more sophisticated shaping of the bounds might be of interest, as discussed in the next
section.

4.3.2 Shaping of constraint velocity and acceleration bounds

In the case of inequality constraints (e ≤ 0 or e ≥ 0), the constraint-based formulation
from Sect. 3.3.1 leads to the following differential relation

rvc ≤ J cq̇ ≤ rvc , (4.7)

with rvc and rvc being the constraint velocity lower and upper bound, respectively.
Without loss of generality, let focus on the shaping of the constraint velocity upper bound.
The same consideration will anyway apply also for rvc . As anticipated in the previous
section, the choice (4.5) can be applied also to inequality constraints. In particular,
choosing

rvc(t) = −et(t)−Ke(t), K > 0 (4.8)

imposes an evolution of the task function that is no faster than a first-order linear system
with a convergence rate depending on the eigenvalues of K. However, maximum values
of the constraint velocity, v = J cq̇, might also be of interest. These can be easily
integrated in (4.8). Let f i denote the ith component of a vector f , and let f iT indicate
the row vector containing the ith row of a matrix F . Then, indicating with v(t) the
vector of the maximum values for the constraint velocity, the ith component of rvc can
be chosen as

rivc = min
{
−eit(t)− kiTe(t), vi(t)

}
. (4.9)
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Figure 4.1: Shaping of the upper velocity bound in case of eit(t) = 0 and vi(t) = vi: the
shaping obtained through the formulation in (4.10) is reported on the left, whereas the
one obtained with the proposed shaping (4.9) is reported on the right; the white areas
represent the set of admissible pairs (ei(t), vi(t)) according to the corresponding bound
shaping. The figures have been generated using T = 0.005 s, vi = 2m/s, aib = 0.75m/s2

and K = kI, with k = 1.5 s-1.

It should be noticed that the proposed velocity bound (4.9) improves the shaping by
Flacco, De Luca, and Khatib (2015). This can be written as

riv(t) = min

{
ei(t)

T
, vi,

√
2aibe

i(t)

}
, (4.10)

with T being the control cycle time and aib > 0 a parameter to adjust the shaping when
the value of ei is approaching 0. Ignoring for a moment the third term on the right-hand
side of (4.10), it can be easily recognized that the bound proposed in (4.9) generalizes
the one in (4.10). Indeed, the latter is obtained from (4.9) assuming eit = 0, vi to be
constant over time, and ki to be a vector having 1/T in the ith position and zero in all the
remaining ones. Furthermore, the typically small value of T (usually 1÷ 5 milliseconds
in nowadays controllers) allows the task function to approach zero with high speed,
leading to sudden deceleration when the limit is actually hit. This typically undesired
effect is avoided by the introduction of the third term on the right-hand side of (4.10),
whose action can be regulated via the braking parameter aib. However, this makes the
contribution of the first term on the right-hand side of (4.10) irrelevant in practice, as it
always results in a less restricting bound, no matter the value of ei. On the other hand,
the proposed bound (4.9) allows, through the setting of kiT , to adjust the maximum rate
of convergence (over time) of e and, thus, also to regulate the maximum allowed speed
in the proximity of the zero value. The above considerations can be better understood
when looking at Fig. 4.1, in which a practical case of shaping of the constraint velocity
upper bound according to (4.9) and (4.10) is presented.

Similarly to the velocity case, the formulation from Sect. 3.3.4 leads to the following
second-order differential constraint

rac ≤ J cq̈ + J̇ cq̇ ≤ rac , (4.11)
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which, by recalling that q̈ = M−1τ ′, is equivalently written for torque-controlled robots
as

rac ≤ J cM
−1τ ′ + J̇ cq̇ ≤ rac . (4.12)

The terms rac and rac in (4.11)–(4.12) represent the lower and upper bounds for the
constraint acceleration v̇ = J cq̈ + J̇ cq̇.

Without loss of generality, let focus again on the shaping of the upper bound. The
choice

rac(t) = −
∂et

∂t
(t)−Dė(t)−Ke(t), D,K ≥ 0 (4.13)

imposes an evolution of the task function that is no faster than a second-order linear
system characterized by stiffness K and damping D. However, it might be desired,
through a more sophisticated shaping of rac , to also limit the constraint velocity v = J cq̇.
Recalling from (3.10) that ė = v + et, and introducing K1 = D−1K, the upper bound
(4.13) can be rewritten as

rac(t) = −
∂et

∂t
(t)−D (v(t)− (−et(t)−K1e(t))) . (4.14)

Limitations on the constraint velocity can then be integrated in (4.14) by replacing the
term −et(t)−K1e(t) with the corresponding velocity bound computed as in (4.9)

rac(t) = −
∂et

∂t
(t)−D(v(t)− rvc(t)). (4.15)

Finally, limitations on the constraint acceleration, v̇, can be directly integrated into
(4.15). Indicating with a the vector of the maximum allowed accelerations, the ith
component of rac can be chosen as

riac(t) = min
{
−eitt(t)− diT (v(t)− rvc), ai(t)

}
, (4.16)

where the symbol −eitt has been used to indicate the ith component of ∂et
∂t

. The pro-
posed acceleration bound (4.16) generalizes the shaping proposed by Flacco, De Luca,
and Khatib (2012) and Osorio, Allmendinger, et al. (2019). These can be obtained by
assuming et = 0, the maximum velocity v to be constant over time, and by choosing di

as a vector having 1/T in the ith position and zero in all remaining ones. Furthermore,
the first term of the bounds by Flacco, De Luca, and Khatib (2012) and Osorio, All-
mendinger, et al. (2019) can be neglected for the same reasons discussed for the bound
(4.10).

4.3.3 Generalized control problem

Consider the case in which a given task specification is composed by both equality and
inequality constraints. Analyzing the constraints in (4.1)–(4.3), it can be easily noticed
that it is possible to bring them all into the form

Au = b. (4.17)



4.3. GENERAL HIERARCHICAL FRAMEWORK 59

velocity acceleration torque

A J eq,c J eq,c J eq,cM
−1

u q̇ q̈ τ ′ = τ − c− g

b rvc rac − J̇ eq,cq̇ rac − J̇ eq,cq̇

C J iq,c J iq,c J iq,cM
−1

d rvc rac − J̇ iq,cq̇ ra,c − J̇ iq,cq̇

d rvc rac − J̇ iq,cq̇ ra,c − J̇ iq,cq̇

Table 4.1: Definitions of the variables in (4.17)–(4.18) for velocity-, acceleration- and
torque-based schemes.

Similarly, the constraints in (4.7), (4.11)–(4.12) can take the form

d ≤ Cu ≤ d. (4.18)

The definition of all the variables in (4.17) and (4.18) for the different control schemes
can be found in Tab. 4.1, where the subscripts eq and iq are used to indicate the Jaco-
bian matrices that are related to the task functions involved in equality and inequality
constraints, respectively. Although not directly included in Tab. 4.1, it should be no-
ticed that the constraints (4.4) can also be brought to the form (4.18) for torque-based
schemes by setting C = I, d = τ − c− g, and d = τ − c− g.

The problem of controlling a robot can therefore be reformulated as the problem
of finding, for each instant of time, a suitable vector u such that a certain number of
constraints given in the form (4.17)–(4.18) are satisfied. In case of redundant robots,
infinite solutions exist to this problem. Thus, a solution can be found by solving a
constrained optimization problem. In the context of redundancy resolution, the control
effort is typically chosen as a cost, i.e.,

min
u

1

2
uTHu

s.t. Au = b, d ≤ Cu ≤ d,
(4.19)

where H ∈ Rn×n is an arbitrary, positive (semi-) definite weighting matrix. However,
it is often desired to control the residual redundant DoFs of the robot by introducing a
reference vector ur and solving the problem

min
u

1

2
(u− ur)

TH(u− ur)

s.t. Au = b, d ≤ Cu ≤ d.
(4.20)

This is of particular interest in acceleration and torque-based schemes, where ur is typi-
cally modeled to damp internal motion of the manipulator (De Luca, Oriolo, et al. 1992).
Another common practice is to use ur to include an auxiliary optimization criteria (e.g.,
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manipulability) via the GBP method by Liegeois et al. (1977). The choice of H in (4.19)
and (4.20) is left to the user. However, specific metrics exist, which ensure dynamical
consistency of the generated robot motion (Peters, Mistry, et al. 2008; Schettino, Fiore,
et al. 2020). Such metrics are used in Section 4.3.5-A.

Omitting the inequality constraints, the solution for (4.20) is given by (Liegeois et al.
1977)

u = A†Hb+ Pur, (4.21)

where A†H = H−1AT
(
AH−1AT

)−1 is the right pseudoinverse of A, weighted through
H , and P = I − A†HA is a projector in the null space of A. In (4.21), matrix A
is assumed to be full row-rank. Such hypothesis will be held also for matrix C. If
this is not the case, singularity-robust techniques should be used in order to perform
pseudoinversions (see the work by Chiaverini (1997) and Di Vito, Natale, et al. (2017)
for an overview).

The optimization problem in (4.19) can be further extended to minimize

min
u

1

2
(u− ur)

TH(u− ur) (4.22)

while attempting to satisfying a set of multiple tasks (imposing equality and inequality
constraints) specified with different levels of priorities

1st level : A1u = b1, d1 ≤ C1u ≤ d1

... ,
...

kth level : Aku = bk, dk ≤ Cku ≤ dk

... ,
...

Nth level : ANu = bN , dN ≤ CNu ≤ dN ,

(4.23)

with Ak, bk, Ck, dk and dk describing the equality and inequality constraints of the kth
priority level (lower k denoting higher priority). Omitting the inequality constraints,
the solution to (4.22)–(4.23) can be computed recursively as (Siciliano and J.-J. Slotine
1991) 

u0 = 0

uk = uk−1 + (AkP k−1)
†H (bk −Akuk−1)

u = uN + PNur

, (4.24)

with k = 1, ..., N . The matrix P k ∈ Rn×n in (4.24) is the well-known augmented
projector (Siciliano and J.-J. Slotine 1991), which can also be recursively computed as
(Greville 1960) {

P 0 = I

P k = (I − (AkP k−1)
†HAk)P k−1

. (4.25)

Finding a solution that fulfills also the inequality constraints is a more complex challenge,
and it is the subject of the following section.
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velocity acceleration torque

b′ rvc rac rac

b′′ 0 J̇ eq,cq̇ J̇ eq,cq̇

Table 4.2: Definition of b′ and b′′ in (4.26) for velocity, acceleration and torque-based
schemes

4.3.4 Extended Saturation in the Null Space Method

As remarked in Sect. 4.2, the SNS algorithm by Flacco, De Luca, and Khatib (2015) is a
powerful tool for the (kinematic) control of redundant robots under hard joint constraints.
In multiple iterations, it computes which joint requires the most scaling to be within its
limits, and subsequently adds the inequality constraint of that limit to the equality
constraints of the task. Moreover, a new scaling factor is computed for the task velocity
reference, which would ensure all joints to be within their limits at the cost of a reduced
speed in task execution. This cycle is repeated until either a solution that does not
require task scaling is found, or all redundant DoFs of the robot are exhausted. In
the latter case, the solution that requires the least scaling of the task (among the ones
obtained in all the iterations) is returned.

This section presents the proposed extension to the SNS algorithm, named extended
SNS (eSNS ), and its integration into the unified control framework introduced in the
previous section. Thanks to this framework, the eSNS algorithm can solve redundancy
resolution problems defined at velocity, acceleration or torque level, indistinctly. Fur-
thermore, compared to the original SNS, the proposed algorithm can handle arbitrary
inequality constraints in the form (4.18) on multiple priority levels. Finally, compared to
pure joint velocity norm minimization, the eSNS attempts at minimizing the cost defined
in (4.20), which includes the weighting matrix H and the additional input vector ur.

Basic eSNS

With reference to Algorithm 4.1, this section shows the steps of the eSNS in its basic
version.

First, the term bk from (4.24) can be decomposed as bk = b′k − b′′k. The definitions
for b′k, b

′′
k ∈ Rn can be found in Tab. 4.2 (where dependency on k is omitted for brevity).

Thus, the solution (4.24) for the kth level of priority considering only the equality con-
straints can be rewritten as

uk = uk−1 + (AkP k−1)
†H (b′k − b′′k −Akuk−1) + P kur,k, (4.26)

with

ur,k =

{
ur, if k = N

0, otherwise
.

To additionally ensure satisfaction of inequality constraints, the solution (4.26) is ex-
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Algorithm 4.1 Basic Extended SNS algorithm for multiple priority levels
1: P 0 = I, u0 = 0
2: for k = 1→ N do
3: Ãk = AkP k−1, P k =

(
I − Ã

†H
k Ak

)
P k−1

4: usat = 0, u′ = Ã
†H
k b′k, u

′′ = Ã
†H
k (−b′′k −Akuk−1) , u

′′′ = P kur,k

5: s∗k = 0, Csat
1→k = null, dsat

1→k = null
6: repeat
7: limits_violated = FALSE
8: uk = uk−1 + usat + u′ + u′′ + u′′′

9: ρ = C1→ku
′, ϕ = C1→kuk, σ = ϕ− ρ

10: if ∃i ∈ [1 : lk] :
(
ϕi < di1→k

)
∨
(
ϕi > d1→k

)
then

11: limits_violated = TRUE
12: get_task_scaling_factor(ρ,σ) ▷ call alg. 4.2
13: if task scaling factor > s∗k then
14: s∗k = task scaling factor
15: u∗

sat = usat, u′∗ = u′, u′′∗ = u′′, u′′′∗ = u′′′

16: end if
17: j = most critical constraint
18: Csat

1→k ← concatenate(Csat
1→k, c

j
1→k)

19: P̂ k−1 =
(
I −

(
Csat

1→kP k−1

)†H
Csat

1→k

)
P k−1

20: Âk = AkP̂ k−1

21: if rank(Âk) ≥ mk then

22: dj1→k =

{
dj1→k, ϕj < dj1→k

d
j

1→k, ϕj > d
j

1→k

23: dsat
1→k ← concatenate(dsat

1→k, d
j
1→k)

24: Ĉk = Csat
1→kP k−1, P̂ k =

(
I − Â

†H
k Ak

)
P̂ k−1

25: usat = Ĉ
†H
k

(
dsat
1→k −Csat

1→kuk−1

)
, u′ = Â

†H
k b′k

26: u′′ = Â
†H
k (−b′′k −Ak (uk−1 + usat)) , u′′′ = P̂ kur,k

27: else
28: uk = uk−1 + u∗

sat + s∗ku
′∗ + u′′∗ + u′′′∗

29: limits_violated = FALSE
30: end if
31: end if
32: until limits_violated = FALSE
33: end for
34: u = uN

panded to the form (line 8)1

uk = uk−1 + usat + u′ + u′′ + u′′′, (4.27)

1All references to line numbers in this section refer to Algorithm 1.
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with the following initialization (line 4):

usat = 0

u′ = (AkP k−1)
†H b′k

u′′ = (AkP k−1)
†H (−b′′k −Ak(uk−1 + usat))

u′′′ = P kur,k.

The vector uk is considered an admissible solution if it satisfies all the inequality con-
straints defined in the first k levels of priority, namely

d1→k ≤ C1→kuk ≤ d1→k, (4.28)

with

d1→k =
[
dT
1 ... dT

k

]T
∈ Rlk

d1→k =
[
d
T

1 ... d
T

k

]T
∈ Rlk

C1→k =
[
CT

1 ... CT
k

]T
∈ Rlk×n.

If a solution uk is admissible (line 10), the algorithm moves to the next priority level. If,
instead, some of the inequality constraints in (4.28) are violated, the eSNS starts/keeps
iterating (line 6) to find a valid solution, eventually scaling the task velocity/acceleration
in b′k by a factor sk ∈ [0, 1] (line 28), if needed. At each iteration, the task scaling factor
sk is computed using Algorithm 4.2 (line 12). The input arguments ρ and σ are given
as (line 9):

ρ = C1→ku
′

σ = C1→kuk − ρ.
(4.29)

Although a new scaling factor is computed at every eSNS iteration, it is only applied when
all redundant DoFs of the robot have been exhausted without finding a valid solution
(line 28). In all other cases, it is only checked whether the current solution allows larger
task scaling. In such a case, the solution (and the corresponding task scaling factor) is
stored as the best found (lines 14–15).

Algorithm 4.2 also returns the most critical constraint, i.e., the violated inequality
constraint that requires the smallest scaling factor sk to be satisfied. This constraint
is used in the next phase of the algorithm, which is the saturation phase (lines 17–26).
First, the most critical constraint is converted into an equality constraint

(cj1→k)
Tuk = dj1→k,

with j being the index of the most critical constraint and

dj1→k =

{
dj1→k, if (cj1→k)

Tuk < dj1→k

d
j

1→k, if (cj1→k)
Tuk > d

j

1→k

.
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Algorithm 4.2 Task scaling factor and most critical constraint computation
1: function get_task_scaling_factor(ρ,σ)
2: for i = 1→ lk do
3: si =

(
di1→k − σi

)
/ρi

4: si =
(
d
i

1→k − σi
)
/ρi

5: if si > si then
6: switch(si, si)
7: end if
8: end for
9: smax = mini {s}

10: smin = maxi {s}
11: most critical constraint = argmini {s}
12: if smin > smax ∨ smax < 0 ∨ smin > 1 then
13: task scaling factor = 0
14: else
15: task scaling factor = min {smax, 1}
16: end if
17: end function

Then, it is added to the saturation set, which is the set of all converted inequalities,
forming a system of equations that can be expressed as

Csat
1→kuk = dsat

1→k. (4.30)

Finally, the saturation commands (4.30) are enforced in the solution (4.27), updating its
terms as follows (lines 25–26):

usat =
(
Csat

1→kP k−1

)†H (
dsat
1→k −Csat

1→kuk−1

)
u′ =

(
AkP̂ k−1

)†H
b′k

u′′ =
(
AkP̂ k−1

)†H
(−b′′k −Ak(uk−1 + usat))

u′′′ = P̂ kur,k,

(4.31)

with

P̂ k−1 =
(
I −

(
Csat

1→kP k−1

)†H
Csat

1→k

)
P k−1

P̂ k =

(
I −

(
AkP̂ k−1

)†H
Ak

)
P̂ k−1

.

It should be noticed that enforcing a new saturation only makes sense if there are enough
redundant DoFs left in the system to handle it. From an algebraic point of view, this
condition is satisfied if rank(AkP̂ k−1) ≥ mk (line 21), with Ak ∈ Rmk×n (mk ≤ n).
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Relation to the original SNS algorithm

Analyzing Algorithm 4.1, a similar structure as the original SNS algorithm (Flacco, De
Luca, and Khatib 2015) can be recognized: after computing a first guess that satisfies
the equality constraints, the solution is updated as long as one or more limits are found
to be violated. Insertions to the saturation set happen using a policy based on the
identification of the most critical constraint. Finally, task scaling is applied when all
redundant DoFs have been used without finding a valid solution. It can also be noticed
from (4.31) that, as in the original SNS algorithm, an intermediate level of priority is
imposed between the saturation commands usat and the other terms introduced in (4.27).
This is guaranteed by the null space projectors P̂ k−1 and P̂ k.

On the other hand, thanks to the special structure of Ĉk and P̂ k−1, Algorithm
4.1 can perform saturation in any task space and, thus, handle arbitrary inequality
constraints in the form (4.18). This is a key extension compared to the work by Flacco,
De Luca, and Khatib (2015), where only joint space inequality constraints have been
handled. Moreover, the general cost (4.20) is considered in Algorithm 4.1 through the
use of general weighted pseudoinverses and the inclusion of the u′′′ in (4.31). In fact,
specializing Algorithm 4.1 for velocity-based redundancy resolution, setting H = I ∈
Rn×n, ur = 0 and considering only joint space constraint with the highest priority
(C1→k = I ∈ Rn×n ∀k = 1, . . . , N) would return the multi-task SNS algorithm by
Flacco, De Luca, and Khatib (2015).

To further highlight the relation between eSNS and SNS, the saturation commands
usat in (4.31) can be rewritten in the form

usat = ((I −W k)C1→kP k−1)
†H dsat, (4.32)

where

djsat =


dj1→k − (cj1→k)

Tuk−1, if (cj1→k)
Tuk < dj1→k

d
j

1→k − (cj1→k)
Tuk−1, if (cj1→k)

Tuk > d
j

1→k

0, otherwise
,

from which it is easier to recognize the similarity with the joint velocity saturation of the
SNS. The diagonal matrix W k ∈ Rlk×lk , whose diagonal has 0 elements in the entries
corresponding to the constraints in the saturation set and 1 in all other entries, operates
as a constraint selection matrix in (4.32) as in the original SNS. Also the projector P̂ k−1

can be brought in a form that recalls the one introduced by Flacco, De Luca, and Khatib
(2015)

P̂ k−1 =
(
I − ((I −W k)C1→kP k−1)

†H C1→k

)
P k−1. (4.33)

Fast-eSNS

This section analyzes the numerical performance of Algorithm 4.1. The goal is to obtain
a more efficient algorithm, which will be named Fast-eSNS. The procedure will follow
a similar reasoning as the work by Flacco and De Luca (2013a). However, not all the
machinery can be easily transferred to the general case considered in this work, since it
exploits some specific properties of the standard Moore-Penrose pseudoinverse.
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At each level of priority, the first operation that is critical for the computation time
is the pseudoinversion of the matrix Ãk = AkP k−1 (line 3 of Algorithm 4.1). Different
numerical methods exist for computing the pseudoinverse of a matrix and the program-
mer must decide on a trade-off between speed and robustness. A common choice is to
resort to the singular value decomposition, which enables the analysis of singularities
and the implementation of damped pseudoinversion methods. However, a faster method
based on QR-Decomposition exists, as extensively pointed out by Flacco and De Luca
(2013a) and Ziese, Fiore, et al. (2020). Consider the QR-Decomposition of the product
ÃkH

−1Ã
T

k

ÃkH
−1Ã

T

k = Qk

Rk

0

 =
[
Y k Zk

]Rk

0

 ,

with Y k ∈ Rn×mk and Zk ∈ Rn×(n−mk) orthogonal matrices composing Qk, and Rk ∈
Rmk×mk being upper triangular. Then, the weighted pseudoinverse of Ãk can be com-
puted as

Ã
†H
k = H−1Ã

T

kY kR
−T
k ,

which requires the inversion of an mk ×mk upper triangular matrix only.
Proceeding with the analysis of Algorithm 4.1, it can be easily recognized that the

second expensive operation is the update of the solution uk (lines 25–26). This requires,
at every iteration, the computation of the pseudoinverse of Ĉk = Csat

1→kP k−1 and Âk =
AkP̂ k−1. However, the new solution can be computed from the previous one by a rank-
one update of the pseudoinverse computations. The first step is the rewriting of the
general solution uk by using task augmentation (Chiacchio, Chiaverini, et al. 1991) as

uk = uk−1 + (ATA,kP k−1)
†H bTA,k

= uk−1 +

 Ak

Csat
1→k

P k−1

†H b′k − b′′k −Akuk−1

dsat
1→k −Csat

1→kuk−1

 .
(4.34)

It is possible to show that the result of (4.34) coincides with the one obtained from
(4.31), only if a feasible solution exists. However, the case of unfeasible solutions is
already excluded in Algorithm 4.1 by the condition rank(AkP̂ k−1) ≥ mk. At each eSNS
iteration, only one new saturation command is imposed, corresponding to the most
critical constraint j. Thus, (4.34) can be rewritten as

uk = uk−1

+

 ATA,k

(cj1→k)
T

P k−1

†H


b′k − b′′k −Akuk−1

dsat
1→k −Csat

1→kuk−1

dj1→k − (cj1→k)
Tuk−1

 ,

with ATA,k initialized to Ak at the first iteration and redefined at the end of every cycle
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as:

ATA,k ←

 ATA,k

(cj1→k)
T

 . (4.35)

It can be easily noticed that, at each new iteration, the matrix to pseudoinvert differs
from the one at the previous iteration only by the appended row (cj1→k)

TP k−1. Therefore,
a rank-one update strategy could be used. In particular, an update method for arbitrary
weighting matrix has been derived from the algorithm by Guo-rong and Yong-lin (1986)
for appending a column. This yields

uk = uk−1 +
[(
I − χ(cj1→k)

T
)
(ATA,kP k−1)

†H χ
]

×


b′k − b′′k −Akuk−1

dsat
1→k −Csat

1→kuk−1

dj1→k − (cj1→k)
Tuk−1

 ,
(4.36)

with χ =
(
(cj1→k)

T P̂ k

)†H
∈ Rn defined as update vector. At each new iteration the

solution can then be updated as:

P̂ k ←
(
I − χ(cj1→k)

T
)
P̂ k

usat ← usat + χ
(
dj1→k − (cj1→k)

T (uk−1 + usat)
)

u′ ← u′ − χ(cj1→k)
Tu′

u′′ ← u′′ − χ(cj1→k)
Tu′′

u′′′ ← P̂ kur,k.

(4.37)

It should be noticed that only the weighted pseudoinverse of a vector is required to com-
pute χ and, thus, to update the solution according to (4.37). This allows to significantly
speed up the update of the eSNS solution.

Optimality of the eSNS solution

This section focuses on the optimality properties of the eSNS. The analysis will refer
to the Algorithm 4.1, but the same considerations would apply for the Fast-eSNS. With
reference to the optimization problem (4.23), it is easy to see that Algorithm 4.1 provides
an optimal solution in case no saturation commands are required. In fact, the entire
algorithm reduces to (4.24) in this trivial case. In case some inequality constraints are
violated, however, the eSNS can enforce saturation commands at each level of priority
following a specific policy, which is based on the iterative identification of the most
critical constraint. Moreover, if at the kth level of priority it was not possible to find
a feasible solution uk, the eSNS applies a task scaling strategy. It should be noticed
that the final scaling factor will also depend on the specific sequence with which the
constraints were added to the saturation set. Thus, it can be concluded that, in general,
there is no guarantee that the final saturation set and task scaling factor will produce
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an optimal solution. In other words, other admissible solutions might exist that return
a smaller value of the cost function in (4.23) and/or higher scale factors.

To check whether a solution is optimal in some sense, a suitable optimization criterion
must be defined. To this purpose, the following optimization problem is introduced to
compute a solution at the kth level of priority

min
u,sk

1

2
(u− ur,k)

TH(u− ur,k) +
1

2
M(1− sk)

2

s.t. Aku = skb
′
k − b′′k

A1→k−1u = b′∗1→k−1 − b′′1→k−1

d1→k ≤ C1→ku ≤ d1→k

0 ≤ sk ≤ 1

, (4.38)

where b′∗1→k−1 =
[
s1b

′T
1 ... sk−1b

′T
k−1

]T
and M ≫ 1 is a new (scalar) parameter used

to weight the maximization of the scale factor sk with respect to the minimization of
(u − ur,k)

TH(u − ur,k). The problem (4.38) can be rewritten as a standard quadratic
problem with linear (equality and inequality) constraints

min
ξ

1

2
ξTΘξ

s.t. Λξ = β, Γξ ≤ δ,
(4.39)

with

ξ =

u− ur,k

1− sk

 ,Θ =

H 0

0 M

 ,Λ =

 Ak b′k

A1→k−1 0

 ,

β =

 b′k − b′′k −Akur,k

b′∗1→k−1 − b′′1→k−1 −A1→k−1ur,k

 ,

Γ =


−C1→k 0

C1→k 0

0 1

0 −1

 , δ =


−d1→k +C1→kur,k

d1→k −C1→kur,k

1

0

 .

Necessary and sufficient optimality conditions for the problem (4.39) are given by the
well-known Karush-Kuhn-Tucker (KKT) criteria (Kuhn and Tucker 1951):

Θξ +ΛTλ+ ΓTµ = 0 (4.40a)
µT (Γξ − δ) = 0 (4.40b)

Λξ = β (4.40c)
Γξ ≤ δ (4.40d)
µ ≥ 0, (4.40e)
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where λ ∈ Rm1+...+mk and µ ∈ R2lk+2 are the Lagrange multipliers associated with the
equality and inequality constraints, respectively.

In order to analyze the optimality properties of the eSNS, start considering condition
(4.40c). This imposes the satisfaction of the kth equality constraint, possibly obtained
through task scaling. Furthermore, it enforces that the (k − 1) higher priority equality
constraints are satisfied, preserving the task scaling factors obtained by the eSNS up to
the (k − 1)th level of priority. Reviewing the structure of the eSNS, it can be easily
stated that the satisfaction of the kth equality constraint is guaranteed at each iteration
by construction of the algorithm. Moreover, the use of the projector P̂ k−1 in the solution
ensures that the satisfaction of higher priority equality constraints (each considered with
its computed task scaling factor) is preserved. In the light of the considerations above, it
is possible to extract from (4.40a) an expression related only to the constraints of the kth
priority level. This is achieved via left multiplication of (4.40a) by the (n+ 1)× (n+ 1)
matrix

Ψk−1 =

P T
k−1 0

0 1

 .

Recalling that A1→k−1P k−1 = 0, the above-mentioned multiplication yields

Θ̃ξ + Λ̃
T
λ̃+ Γ̃

T
µ = 0, (4.41)

where Θ̃ = Ψk−1Θ, Λ̃ =
[
AkP k−1 b′k

]
, Γ̃ = ΓΨT

k−1, and λ̃ ∈ Rmk contains the first
mk elements of λ.

Another condition that is automatically satisfied inside the eSNS is (4.40d). Indeed,
task-related inequality constraints are checked at every eSNS iteration. Moreover, the
constraints on sk are satisfied by construction of Algorithm 4.2, which already outputs
task scaling factors in the range [0, 1].

It can be noticed that, for the constraints belonging to the saturation set, also con-
dition (4.40b) is automatically satisfied inside the eSNS. Indeed, for a generic constraint
j in the set, it is γjξ − δj = 0, regardless of the value of µj, which is imposed to be
positive by (4.40e). Satisfying (4.40b) for those constraints that are not in the saturation
set requires that the corresponding elements of µ are null. Defining the (n+1)× (n+1)
matrix

Ψ̂k−1 =

P̂ T

k−1 0

0 1


allows extracting from (4.40a) an expression related only to constraints of the kth priority
level that are not in the saturation set. This is achieved via left multiplication by
Ψ̂k−1. Recalling that A1→k−1P̂ k−1 = 0 and that the components of µ associated to
non-saturated constraints are null, the multiplication yields

Θ̂ξ + Λ̂
T
λ̃ = 0, (4.42)

where Θ̂ = Ψ̂k−1Θ and Λ̂ =
[
AkP̂ k−1 b′k

]
. Since the possible rank-deficiency of

AkP̂ k−1 is already checked at each eSNS iteration, (4.42) admits always a solution λ̃,
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which can be computed as

λ̃ = −
(
Λ̂

†Θ)T

Θ̂ξ. (4.43)

Note that the computation of λ̃ from (4.43) is not expensive. Indeed, given the structure
of Λ̂, the matrix Λ̂

†Θ
can be obtained as rank-one update of (AkP̂ k−1)

†Θ, which is
already computed at every eSNS iteration. Substituting (4.43) in (4.41) yields

Γ̃
T
µ = −

(
Θ̃− Λ̃

T
(
Λ̂

†Θ)T

Θ̂

)
ξ. (4.44)

As already mentioned, condition (4.40b) imposes that the elements of µ associated with
the constraints that are not in the saturation set are null. Therefore, the vector µ can

be partitioned as µ =
[
µsatT 0

]T
, where µsat ∈ Rlsat collects the Lagrange multipliers

associated with the saturated constraints. Thus, (4.44) can be rewritten as

(
Γ̃

sat
)T

µsat = −
(
Θ̃− Λ̃

T
(
Λ̂

†Θ)T

Θ̂

)
ξ,

where Γ̃
sat ∈ Rlsat×(n+1) is the matrix obtained by extracting the rows of Γ̃ associated

with the saturated constraints. Given the linear independence of the rows of C1→k (as
assumed in Sect. 4.3.3), the matrix Γ̃

sat
can be considered as full row-rank. Thus, µsat

can be computed as

µsat = −
((

Θ̃
T − Θ̂

T
Λ̂

†Θ
Λ̃
)(

Γ̃
sat

)†Θ
)T

ξ. (4.45)

Therefore, it can be concluded that the eSNS provides an optimal solution to the problem
(4.38) if and only if the components of µsat in (4.45) are non-negative. Note that the
evaluation of (4.45) increases the computational burden of the algorithm. Indeed, an
additional pseudoinverse operation is required for computing (Γ̃

sat
)†Θ. Nevertheless, the

optimality check can be significantly simplified by following similar reasoning as the
work by Flacco and De Luca (2013b), i.e., by considering that the eSNS is already able
to output a task scaling factor close to 1 (its maximum). Thus, the optimality request
on the scaling factor can be removed and the following simplified QP problem can be
considered:

min
u

1

2
(u− ur,k)

TH(u− ur,k)

s.t. Aku = skb
′
k − b′′k

A1→k−1u = b′∗1→k−1 − b′′1→k−1

d1→k ≤ C1→ku ≤ d1→k

, (4.46)
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where sk is the scaling factor obtained from the eSNS. By setting

ξ = u− ur,k, Θ = H , Λ =

 Ak

A1→k−1

 ,

β =

 skb
′
k − b′′k −Akur,k

b′∗1→k−1 − b′′1→k−1 −A1→k−1ur,k

 ,

Γ =

−C1→k

C1→k

 , δ =

−d1→k +C1→kur,k

d1→k −C1→kur,k

 ,

problem (4.46) can be brought to the standard form (4.39) and the same analysis based on
the KKT conditions can be conducted as in the previous case. Again, the only condition
that needs to be checked is the non-negativeness of the components of the multipliers
µsat. These can be computed by following the same steps shown in the previous case.
As a result, (4.45) becomes

µsat = −
(
H

(
I −

(
AkP̂ k−1

)†H
Ak

)
×
(
ΓsatP k−1

)†H)T

(u− ur,k) .

Moreover, by considering the particular structure of Γ and defining the auxiliary vector
µ̃sat as

µ̃sat = −
(
H

(
I −

(
AkP̂ k−1

)†H
Ak

)
×
(
Csat

1→kP k−1

)†H)T

(u− ur,k) ,

(4.47)

it is possible to compute the components of µsat as

µsat,j =

{
−µ̃sat,j, if (csat,j1→k)

Tuk = dsat,j1→k

µ̃sat,j, if (csat,j1→k)
Tuk = d

sat,j

1→k

,

with j = 1, . . . , lsat. Note that the evaluation of (4.47) requires very limited computa-
tional effort, since both (AkP̂ k−1)

†H and (Csat
1→kP k−1)

†H are already computed inside the
eSNS. Analogously, reintroducing the constraint selection matrix W k, it is also possible
to define the auxiliary vector µ̃ as

µ̃ = −
(
H

(
I −

(
AkP̂ k−1

)†H
Ak

)
×

((
I −W k

)
C1→kP k−1

)†H
)T

(u− ur,k) ,

(4.48)
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and then compute all the components of µ as follows:

µj = µj+lk = µ̃j = 0, if wj,j
k = 1

µj = −µ̃j, µj+lk = 0, if wj,j
k = 0 AND (cj1→k)

Tuk = dj1→k

µj = 0, µj+lk = µ̃j, if wj,j
k = 0 AND (cj1→k)

Tuk = d
j

1→k,

(4.49)

with j = 1, . . . , lk and wj,j
k being the jth element of the diagonal of W k. From (4.48)

and (4.49), it is easier to see that the results of this section extend the work by Flacco
and De Luca (2013b) and Flacco, De Luca, and Khatib (2015). Indeed, in the special
case in which H = C1→k = I ∈ Rn×n,ur,k = 0 ∀k = 1, . . . , N , (4.48) reduces to

µ̃ = −
((

I −
(
AkP̂ k−1

)†I
Ak

)
((I −W k)P k−1)

†I
)T

u,

which, imposing Ak = Jk (velocity-based redundancy resolution), returns the auxiliary
vector introduced by Flacco and De Luca (2013b).

Opt-eSNS

Following the analysis from the previous section, it is possible to develop a new variant
of the eSNS algorithm, named Opt-eSNS, which can always guarantee optimality of the
solution. The Opt-eSNS is derived from the basic one by simply adding the optimality
check on µsat after every iteration (see Algorithm 4.3). This allows constraints to also be
removed from the saturation set, when the associated Lagrange multipliers are negative.
In view of (4.47), the optimality check can be performed directly on the components of
µ̃sat. Furthermore, the possibility of removing constraints from the saturation set allows
the initialization of Csat

1→k and dsat
1→k based on the result of the previous execution of the

algorithm (warm start). Considering that the commands bk, d1→k, d1→k are typically
smooth, it is reasonable to assume that two consecutive solutions will have similar sat-
uration sets at each level of priority. Thus, indicating with {sat}−k the set of indices
associated with the saturated commands of the kth priority level at the previous execu-
tion of the algorithm, it is possible to initialize Csat

1→k and dsat
1→k by extracting from C1→k,

d1→k and d1→k the rows and the components according to the indices in {sat}−k . This
operation is carried out at lines 3–4 of Algorithm 4.3. Then, the set {sat}−k is updated
at line 26, after the solution for the kth priority level has been computed. This kind of
initialization of the saturation set typically reduces the total number of iterations inside
the algorithm, therefore resulting in a faster computation (see the results of Sect. 4.3.5-
C). Algorithm 4.3 iterates until an optimal solution is found. Therefore, a more suitable
name for the boolean variable used at lines 22 and 25 would be non_optimal_solution.

It is finally worth considering whether the adoption of the Opt-eSNS is preferable
over the employment of state-of-the-art QP solvers, which can directly solve the problem
(4.38) for each level of priority. First, it should be noticed that the dimension of the set of
constraints significantly increases as the dimension of A1→k−1 increases in (4.38) at each
new priority level. This makes state-of-the-art QP solvers become slower as k increases.
On the other hand, the use of null space projectors in the Opt-eSNS limits the dimension
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Algorithm 4.3 Opt-eSNS algorithm for multiple priority levels
1: P 0 = I, u0 = 0
2: for k = 1→ N do
3: Csat

1→k ← C
{sat}−k
1→k

4: dsat
1→k ← d

{sat}−k
1→k

5: Âk = AkP̂ k−1

6: Ĉk = Csat
1→kP k−1

7: P k =
(
I − Ã

†H
k Ak

)
P k−1

8: P̂ k−1 =
(
I −

(
Csat

1→kP k−1

)†H
Csat

1→k

)
P k−1

9: P̂ k =

(
I −

(
AkP̂ k−1

)†H
Ak

)
P̂ k−1

10: usat = Ĉ
†H
k

(
dsat
1→k −Csat

1→kuk−1

)
11: u′ = Â

†H
k b′k

12: u′′ = Â
†H
k (−b′′k −Ak (uk−1 + usat))

13: u′′′ = P̂ kur,k

14: s∗k = 0
15: repeat
16: ...(same code as Alg. 4.1)

17: µ̃sat = −
(
H

(
I − Â

†H
k A

)
Ĉ

†H
k

)T

(u− ur,k)

18: for j = 1→ lsat do

19: if


(csat,j1→k)

Tuk = dsat,j1→k AND µ̃sat,j > 0

OR

(csat,j1→k)
Tuk = d

sat,j

1→k AND µ̃sat,j < 0

 then

20:
21: {sat}k ← {sat}k\{j}
22: limits_violated = TRUE
23: end if
24: end for
25: until limits_violated = FALSE
26: {sat}−k = {sat}k
27: end for
28: u = uN

of the matrices to be (pseudo-)inverted, typically resulting in faster computation times
for numeric results). Furthermore, although it is normally possible to find a good range
of values, the choice of M might result not to be trivial and dependent on the specific
problem to solve. Values that are not big enough could lead to conservative scale factors.
On the contrary, too large values can undermine the numerical stability of the solver and
lead to unfeasible problems. Not being dependent on such parameter is then an additional
benefit of the proposed Opt-eSNS algorithm.
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Figure 4.2: LBR iiwa moving on a star-like path during the experiments of Sect. 4.3.5-A.
The path is defined on the Y Z plane. Each star segment (indicated with a capital letter)
has a length of 24 cm.

4.3.5 Results

This section reports experiments and simulations to numerically support the effective-
ness of the proposed framework in solving (prioritized) redundancy resolution problems
defined at velocity, acceleration or torque level. The benefits of the variants introduced
in Sect. 4.3.4 are also highlighted, compared to basic eSNS algorithm. The presented
results are obtained through experiments carried out on a KUKA LBR iiwa 7-DoFs robot
(Fig. 4.2), as well as a highly-redundant mobile dual-arm system (Fig. 4.13).

A. First set of experiments with the LBR iiwa robot

In the first set of experiments the LBR iiwa performs repeatedly the same tasks with the
basic eSNS solver working at velocity, acceleration and torque level. In the first two cases
the output of the solver is integrated to obtain a joint position reference, which is then
provided to a low-level position controller; in the last case the output of the algorithm
is directly fed to the joint actuators and an actual control loop is implemented. All the
algorithms run as real-time module in a VxWorks® (32 bit) environment on one of the
four cores of an Intel Core™i5-45705 (2.89 GHz) CPU with 432 MB of dedicated RAM.
The control cycle time is 1 ms.

The first task is to track a given desired Cartesian trajectory with the center point of
the robot end-effector (equality constraint). Figure 4.2 shows the Cartesian path used for
the experiments. The robot is commanded to move on each segment of the star, returning
every time to the center point, following a sinusoidal velocity profile. The total planned
time is 12 seconds (1.5 seconds per segment). The initial end-effector orientation must
be kept along the entire trajectory. Therefore, both Cartesian position and orientation
of the robot are controlled and only one redundant DoF is available.
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Figure 4.3: Normalized joint position, velocity and acceleration produced by the velocity-
based eSNS solver in the experiments of Sect. 4.3.5-A.
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Figure 4.4: Normalized elbow velocity in y-direction produced by the velocity-based
eSNS solver in the experiments of Sect. 4.3.5-A.
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Joint Position Lim. Velocity Lim. Acceler. Lim. Initial Pos.

nr. [rad] [rad/s] [rad/s2] [rad]

1 ±2.9234 ±1.45 ±9 −0.7854

2 ±2.0508 ±1.45 ±9 +2.0502

3 ±2.9234 ±1.45 ±9 +2.0721

4 ±2.0508 ±1.45 ±9 −1.6563

5 ±2.9234 ±1.45 ±9 −2.0893

6 ±2.0508 ±1.45 ±9 +2.0342

7 ±3.0107 ±1.45 ±9 0

Table 4.3: Initial configuration and joint limits for the LBR iiwa. The first joint is at
the base of the robot.

The second task is to keep the velocity of the center point of the robot elbow along
the direction of the y-axis below the limit of 0.35m/s (inequality constraint). Additional
limitations on joint position, velocity and acceleration are considered, which can be seen
in Tab. 4.3. These limitations will originate a set of additional (joint space) inequality
constraints for the solver.

The two considered tasks are handled using one level of priority, meaning that the
inequalities regarding joint and elbow limitations are stacked and treated as one set of
constraints. The initial configuration of the robot, which can be seen in the top-left
corner of Fig. 4.2, places the second and the sixth joint very close to their respective
upper position limit (see Tab. 4.3).

The velocity-based eSNS solver uses the velocity bounds in (4.9) with K = 10I, H =
M and ur = 0. The task reference velocity is defined as in (4.5), with K = 50I. The
output joint velocities are shown in Fig. 4.3 and have been integrated and differentiated,
so as to obtain the corresponding joint position and acceleration. For the sake of clarity,
all the values are reported after a normalization that brings the allowed ranges defined
in Tab. 4.3 to the interval [−1, 1]. Figure 4.4 shows the resulting elbow velocity along
the direction of the y-axis. Also this signal is reported normalized with respect to to its
allowed range. The intensive occurrence of saturation can be easily identified in Fig. 4.3
and Fig. 4.4, proving the effectiveness of the proposed algorithm in respecting the hard
bounds imposed by the inequality constraints in both joint and task space. Furthermore,
the task scaling factor remains constant and equal to 1, indicating that the end-effector
task remains feasible during the entire motion (Fig. 4.9). On the other hand, Figure 4.3
also shows violation of the joint acceleration limits. The fulfillment of such limits cannot
be guaranteed by the velocity bounds in (4.9).

The acceleration-based eSNS solver uses H = M and the acceleration bounds in
(4.16), with D = 40I and K1 = 10. The reference task acceleration is defined as in
(4.6), with K = 400I and D = 40I. Furthermore, the choice ur = −kdampq̇(t) (with
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Figure 4.5: Normalized joint position, velocity and acceleration produced by the
acceleration-based eSNS solver in the experiments of Sect. 4.3.5-A.
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Figure 4.6: Normalized elbow velocity in y-direction produced by the acceleration-based
eSNS solver in the experiments of Sect. 4.3.5-A.
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Figure 4.7: Joint motion produced by the torque-based eSNS solver in the experiments of
Sect. 4.3.5-A; since a measure of the joint acceleration is not available, only (normalized)
joint position and velocity are reported alongside the commanded joint torques, which
are the actual output of the solver.
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Figure 4.8: Normalized elbow velocity in y-direction produced by the torque-based eSNS
solver in the experiments of Sect. 4.3.5-A.
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Figure 4.9: Task scaling factor (above) and Cartesian tracking error for the experiments
of Sect. 4.3.5-A; position error (in norm) is presented in the center; orientation error,
reported as the angle extracted from the quaternion error, is reported below.

kdamp a positive gain set to 20) is used to damp null space motions. The generated joint
motion is shown in Fig. 4.5. Compared to Fig. 4.3, the constraint on the maximum joint
acceleration is now fulfilled. On the other hand, it is more difficult for the algorithm
to find a feasible solution throughout the Cartesian end-effector trajectory and a task
scaling smaller than one is observed in some cases (Fig. 4.9). The elbow velocity along
the y-direction is also reported (Fig. 4.6).

The torque-based eSNS solver uses the same task reference and bounds as the accel-
eration controller. Damping of null space motion is again included, this time with the
choice ur = −M (kdampq̇(t)), with kdamp = 20. The choice H = M−1 should produce
the same joint motion as the acceleration-based solver. However, inaccuracy in the esti-
mation of the complete robot dynamics results in a different motion (see Fig. 4.7). For
the same reason, small inaccuracies can be noticed on the joint velocity saturation, as
well as on the saturation of the elbow velocity along the y-direction (see Fig. 4.8). A
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Figure 4.10: Task scaling factors (above) and cost function values (below) produced by
the different eSNS variants in the experiments of Sect. 4.3.5-B.

different trend of the task scaling factor is also observed in Fig. 4.9. For the sake of
completeness, Fig. 4.7 also reports the trend of the commanded joint torques, which are
the actual output of the solver.

The tracking of the Cartesian end-effector trajectory is also poorer when the robot is
torque-controlled (Fig. 4.9). In the other cases, the tracking error is considerably smaller
and increases only when a task scaling s < 1 is observed, as visible in the enlargement
of the center plot.

B. Second set of Experiments with the LBR iiwa robot

The main goal of the second set of experiments is to highlight the benefits of the Opt-
eSNS, compared to the basic eSNS algorithm. The experimental setup presents the
same computing hardware and control cycle time as Sect. 4.3.5-A, while the task
definition has been slightly modified. Indeed, the LBR iiwa is commanded again to
track the Cartesian trajectory described in Sect. 4.3.5-A with its end-effector cen-
ter point. However, this time the orientation is not constrained, leaving four redun-
dant DoFs available. Moreover, the total planned time is reduced to 8 seconds (1
second per each star segment) and the initial joint configuration is changed to q0 =
[−0.9 2 2.1721 − 1.8055 − 2.0893 1.9834 0]T rad. The same inequality constraints
(elbow velocity along the direction of the y-axis and joint limits) of Sect. 4.3.5-A are
instead considered. All the tasks (equality and inequality constraints) are handled using
one level of priority and solved using the velocity-based solver with H = I and ur = 0.
Velocity bounds are computed according to (4.9) using K = 10I, whereas task references
are computed according to (4.5), with K = 50I. This specific setup has been chosen
because it clearly shows the non optimality of the solution returned by the basic eSNS.
Indeed, the basic eSNS and Opt-eSNS show quite different results when used to perform
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Figure 4.11: Normalized elbow velocity in y-direction produced by the different eSNS
variants in the experiments of Sect. 4.3.5-B.
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Figure 4.12: Task scaling factor produced by the state-of-the-art QP solver as M changes
in the experiments of Sect. 4.3.5-B. For a meaningful comparison, only the first 6.2
seconds of motion are considered in every case.

the assigned task. The disparity between the two solutions comes from the ability of
the Opt-eSNS of removing constraints from the (optimal) saturation set. Figure 4.10
reports the task scaling factors and cost function (1

2
(u− ur)

T H (u− ur)) values over
time obtained by the two algorithms. The difference in the results is especially visible
in the first second of motion and it is highly reflected on the trend of the elbow velocity
along the y direction. As visible in Fig. 4.11, the non-optimal saturation sets obtained
through the basic eSNS lead to sudden variations in the first second of motion, whereas
the Opt-eSNS returns smoother motions.

To validate the optimality of the results of the Opt-eSNS, the obtained solution has
been compared with the one returned by a state-of-the-art QP solver (qpOASES by Fer-
reau, Kirches, et al. (2014)), operating on the same set of constraints and the cost function
in (4.38). The average task scaling factor and the average value of 1

2
(u− ur)

T H (u− ur)
(which in this special case coincides with the joint velocity norm function) are reported
in Tab. 4.4 for the different algorithms used in the experiments of this section. It can
be noticed that the Opt-eSNS provides both a higher average task scaling factor and
a lower cost function value in the considered experiment, compared to the basic eSNS
algorithm.
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Algorithm Task scaling factor 1
2
(u− ur)

T H (u− ur)

s [rad2/s2]

Basic e-SNS 0.9939 1.0533

Opt e-SNS 0.9944 1.0459

qpOases (M = 103) 0.9917 1.0443

qpOases (M = 108) 0.9944 1.0459

Table 4.4: Average task scaling factor and cost function value for the experiments of
Sect. 4.3.5-B.

Finally, the importance of choosing a good value for the parameter M when using
a state-of-the-art QP solver should be remarked, as opposed to the absence of such
parameter in the Opt-eSNS. Values of M that are too small could lead to non optimal
solutions. In the proposed experiments, e.g., a value of M = 103 returned worse results
than the basic eSNS in terms of average task scaling factor (see Tab. 4.4). On the other
hand, bigger values of M may lead to numerical instability and, thus, to unfeasible QP
problems (Fig. 4.12).

C. Simulations with the mobile dual-arm system

This section presents the results of a set of simulations involving a mobile dual arm
manipulator with 17 DoFs (Fig. 4.13): the mobile base is equipped with omnidirectional
wheels and it is therefore modeled as a sequence of two prismatic joints and a revolute
one, all located at the center of the base; additionally, two LBR iiwa robots are mounted
on top of the mobile base. The main objective of the simulations is to prove the effec-
tiveness of the proposed algorithms in handling multiple levels of priority. Moreover, the
performance of the different eSNS variants is evaluated. The simulations are carried out
in MATLAB® environment running on an Intel® Core™i7-8850H (2.60GHz) CPU with
16 GB of RAM.

The tasks to execute are distributed on three levels of priority. At the first level, the
center point of the mobile base (yellow point in Fig. 4.13) is required to track a desired
one-dimensional trajectory along the direction of the Y axis. The trajectory starts at
y = 0 and ends in y = 0.5, following a trapezoidal velocity profile. The total planned
time is 8 seconds. The top row of Fig. 4.13 shows the desired y trajectory (drawn for
a fixed value x = 0) as a red segment. Additionally, limitations on the position and
the velocity of each joint are considered: the limit values used for the mobile base are
reported in Tab. 4.5, whereas the limits from Tab. 4.3 are used for the two robotic arms.
The position limits of the first two joints are represented by the blue rectangle in Fig.
4.13.

At the second priority level, the left arm is required to track a desired three-dimensional
positional Cartesian trajectory with its end-effector center point. The trajectory consists
in the star-like path with sinusoidal velocity profile introduced in Sect. 4.3.5-A. The total
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Figure 4.13: Motion sequence of the mobile dual-arm robot in the simulation of Sect.
4.3.5-C. The top row shows a top view of the motion, whereas the bottom row offers a
side view.

Lower
Position
Limit

Upper
Position
Limit

Velocity
Limit

Initial
Position

Mobile Base
Joint 1 −0.1m 0.15m ±0.5m/s 0m

Mobile Base
Joint 2 0m 0.75m ±0.5m/s 0m

Mobile Base
Joint 3 −0.5 rad 0.5 rad ±0.5 rad/s 0 rad

Left Elbow y
Coord. 0.6m 0.85m + inf m/s 0.6216m

Right Elbow y
Coord. −0.75m −0.5m − inf m/s −0.7127m

Table 4.5: Limits and initial positions for the joints of the mobile base and the elbow
center points for the simulations of Sect. 4.3.5-C.

planned time is again 8 seconds (1 second per star-segment). Moreover, limitations on
the position along the y-axis are imposed on the left elbow center point. These limita-
tions are represented by the yellow planes in Fig. 4.13, while the numeric values of the
lower and upper position limit are reported in Tab. 4.5.
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Priority
Level Inequality Constraints Equality Constraints

1 Joint position and velocity limits
(dim. 17)

Desired trajectory for the mo-
bile base y coordinate (dim. 1)

2 Position limits on left elbow y co-
ordinate (dim. 1)

Desired trajectory for the left
end effector center point (dim.
3)

3 Position limits on left elbow y co-
ordinate (dim. 1)

Desired trajectory for the right
end effector center point (dim.
3)

Table 4.6: Task hierarchy for the simulations of Sect. 4.3.5-C.

On the third level of priority, a three-dimensional positional Cartesian trajectory is
assigned to the end-effector center point of the right arm. The trajectory consists of a
circular path defined in the XY -plane (center c0 = [1.0496 − 0.6635 1.0690]m, radius
r0 = 0.15m) with a trapezoidal velocity profile. The planned time to cover the circular
path is also 8 seconds. Moreover, limitations on the position along the y-axis are imposed
on the right elbow center point. As for the left arm, such limitations are represented
by yellow planes in Fig. 4.13, while the numeric values of the lower and upper position
limits are reported in Tab. 4.5. An overview of the considered set of tasks is given in
Table 4.6.

The tasks are solved by using the basic eSNS, operating at velocity level with H = I
and ur = 0. All the velocity bounds are computed according to (4.9), with K = 10I,
whereas all task references are computed according to 4.5 using K = 100I. The initial
joint configuration of the mobile platform is reported in Tab. 4.5, while left and right
arms start from q0,l and q0,r, respectively, with

q0,l =
[
−1.2 −0.57 0 0.78 0 0 0

]
]T rad

q0,r =
[
−1.9 0.27 0 −0.98 1.8 −1.2 0

]T
rad

.

The control cycle time used in the simulation is 1 ms.
The trend of the joint position and velocity over time is reported in Fig. 4.14, whereas

Fig. 4.15 shows the normalized position along the y-axis of the elbow center points; all
the quantities are reported normalized with respect to their respective admissible range
of motion. Finally, Fig. 4.16 reports the trend of the scale factors and the tracking errors
for each priority level.

The intensive saturation of different joint and task space variables can be noticed in
Fig. 4.14 and 4.15. Having the highest priority, joint limits are never violated. Satisfying
the equality constraint of the first priority level is also possible, as shown by the constant
task scaling factor (equal to 1) and the small tracking error in Fig. 4.16. On the other
hand, the demanding task specification produces task scaling on the second (from time



4.3. GENERAL HIERARCHICAL FRAMEWORK 85

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8

-1

-0.5

0

0.5

1

Figure 4.14: Normalized joint position and velocity produced by the velocity-based eSNS
solver in the Simulation of Sect. 4.3.5-C. Joint motion is reported separately for the
mobile base (top), the left arm (center) and the right arm (bottom).
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Figure 4.15: Normalized elbow positions in y-direction produced by the velocity-based
eSNS solver in the Simulation of Sect. 4.3.5-C.

t = 5.86 s until t = 5.940 s) and third (from t = 5.634) priority level. More specifically,
the task scaling factor of third task rapidly decreases to zero as the related constraints
become incompatible with the task hierarchy. As a consequence, the task is completely
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Figure 4.16: Task scaling factors (above) and norm of Cartesian tracking position errors
(below) produced by the velocity-based eSNS solver in the simulation of Sect. 4.3.5.-C

sacrificed, leading to violation of the right elbow position limit (Fig. 4.15) and an increase
of the error in tracking the circular trajectory (Fig. 4.16). It is worth noticing that at
each priority level the tracking error remains limited throughout the entire motion and
increases only when the corresponding task scaling factor becomes smaller than 1. This
can be easily noticed in the enlargement of the bottom plot in Fig. 4.16.

To evaluate the performance of the different eSNS variants, the same simulation has
been repeated using the Fast-eSNS, the Opt-eSNS and the Opt-eSNS with warm start.
The joint motion produced by the Fast-eSNS is, as expected, identical to the one obtained
with the basic eSNS and it is therefore not reported. The main advantage of this variant
lies in its computational efficiency. This can be appreciated in Fig. 4.17, where the total
number of iterations and the execution time of each eSNS variant are reported. It can be
easily noticed that the Fast-eSNS always provides faster computation compared to the
basic eSNS, with the difference on the execution time that is as significant as the number
of total iterations increases. The Opt-eSNS returns, in light of the optimality check
performed inside the algorithm, slightly different solutions. This can be directly noticed
in Fig. 4.18, which reports the velocity of the joints that present a more significant
difference, compared to the solution obtained with the basic eSNS. Moreover, differences
can also be noticed in the number of total iterations performed by the algorithm (Fig.
4.17), which is in some cases higher than the basic eSNS due to the removal of constraints
from the saturation set. Figure 4.17 also shows that the Opt-eSNS presents computation
times comparable to the basic eSNS, proving that the computational burden added by the
optimality check is very limited. Since (as expected) the saturation sets do not change
so much and/or so often between two consecutive instants of time, the total number
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Figure 4.17: Number of total iterations (top plot) and execution time (bottom plot) of
the different eSNS variants for the simulations of Sect. 4.3.5-C.
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Figure 4.18: Comparison between the joint velocity obtained with the Opt-eSNS and
the basic eSNS in the simulations of Sect. 4.3.5-C; for brevity, only the joints presenting
significant differences are reported.
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Figure 4.19: Execution time of the state-of-the-art QP solvers in the simulations of Sect.
4.3.5-C.

of iterations is dramatically reduced when using the Opt-eSNS with warm start. As a
consequence, the execution time is sometimes comparable or even lower than the Fast-
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Figure 4.20: Mobile dual-arm robot moving along the y-axis while keeping end-effector
positions in place in the experiment of Sect. 4.3.5-D; the tasks are dropped in decreasing
numerical order when they become unfeasible.

eSNS. This is reasonable, when the difference in terms of the number of total iterations
required by the two algorithms becomes significant. It also provides a good insight on
how much the performance of the eSNS algorithm could be sped up, if the efficient
computation of the Fast-eSNS would be combined with the warm start technique from
the Opt-eSNS. Such further development is left as future work.

Finally, the obtained execution times have been compared with the ones returned by
state-of-the-art QP solvers working on optimization problems in the form (4.38). For a
meaningful comparison, solvers that are implemented as pure MATLAB® code (as the
algorithms used in this section) have been selected. In particular, the Optimization Tool-
box™and the Model Predictive Control Toolbox™offer two different active-set methods
with warm start. The obtained execution times are reported in Fig. 4.19. A direct com-
parison with Fig. 4.17 shows that the state-of-the-art QP solvers present significantly
higher computation times than all presented eSNS variants throughout the motion.

D. Experiment with the mobile dual-arm system

This last experiment highlights the computational efficiency and applicability to real-
time control of the Fast-eSNS. The algorithm performs online redundancy resolution on
the mobile dual-arm robot with three 3-dimensional prioritized tasks.

The first task is to move the omnidirectional mobile base sideways along the y-axis
in Fig. 4.20, while keeping its x-position and its orientation about the z-axis fixed to
their initial values. Additionally, limitations on the position and the velocity of each
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Figure 4.21: Normalized joint position and velocity produced by the velocity-based solver
for the mobile dual-arm robot in the experiment of Sect. 4.3.5-D.

joint are considered. Compared to the limits used in the simulations of previous section,
the maximum allowed position for the second joint of the mobile base has been increased
to 1.4 m. This produces a virtual limit for the mobile base in the direction of the y-
axis, represented in Fig. 4.20 by the white cuboid. The second and third tasks consist
in keeping the end-effector center points of both arms in place, controlling only their
position.

The velocity-based solver is used in the experiment, with H = I and ur = 0. The
initial joint configuration of the mobile platform is

q0,b =
[
0m 0m 0 rad

]T
,

while left and right arms start from q0,l and q0,r, respectively, with

q0,l =
[
2.3562 0.7854 0 −1.5708 −0.5847 0.5236 −0.4363

]T
rad

q0,r =
[
0.7854 −0.7854 0 1.5708 0.5847 −0.5236 0.4363

]T
rad.
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Figure 4.22: Task scaling factor and number of iterations per task of the velocity-based
solver for the mobile dual-arm robot in the experiment of Sect. 4.3.5-D. Execution times
are given for 3, 4, and 7 total iterations.

The computational resources are identical to the experiments in Sect. 4.3.5-A and 4.3.5-
B. The control cycle time is again 1 ms. All the velocity bounds are computed according
to (4.9), with K = 10I, whereas all task references are computed according to (4.5)
using K = 100I.

Figure 4.21 reports the trend of the output joint position and velocity, whereas Fig.
4.22 shows the number of iterations and the evolution of the task scaling factors produced
by the algorithm. As it can be seen in Fig. 4.22, the lowest priority task, i.e., task 3, is
sacrificed first when it comes into conflict with the task 1, followed by task 2. Finally,
the robot comes to a halt when the mobile base reaches the specified virtual limit.The
computation time, tc, required by the solver is also reported in Fig. 4.22 for a different
number of total iterations.

4.3.6 Discussion

The previous sections have presented a general framework for the motion control of
redundant robots. Thanks to a unified formulation of the redundancy resolution problem,
the framework can arbitrary resolve redundancy at velocity, acceleration or torque level.
Thus, both kinematic and torque control are possible, providing the framework with high
versatility with respect to the different application domains and robot interfaces.

The unified formulation has led to the definition of a generalized control problem,
which retains a certain number of essential features. First of all, both equality and in-
equality constraints can be defined in any task space and with arbitrary priority, allowing
high flexibility in the task specification. Methods to define task velocity/acceleration
references (equality constraints) and bounds (inequality constraints) have also been dis-
cussed. In particular, a novel shaping of the velocity and acceleration bounds has been
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introduced, which simplifies and at the same time extends existing solutions in the liter-
ature. Moreover, the unified control problem considers the minimization of an arbitrary
weighted control effort and an additional input vector used to control possibly remaining
redundant DoFs.

A unified formulation also allows for the design of a single redundancy resolution
algorithm. Here, a novel approach is introduced, i.e., the eSNS method, obtained by
extending the existing SNS algorithm from the literature. The eSNS shares the same
structure of SNS and retains all its features: strict prioritization of the constraints accord-
ing to the specified hierarchy of tasks, handling of inequality constraints via saturation
sets, integrated (multitask) scaling technique to extend the execution of unfeasible tasks
in time while preserving task directions. However, the application to the generalized con-
trol problem and the handling of all its features discussed above have required significant
extensions to the method, as thoroughly detailed in Sect. 4.3.4. Additional algorithms
have also been presented, namely the Fast-eSNS and Opt-eSNS, which tackle important
aspects such as computation efficiency and optimality of the solution.

The effectiveness of the eSNS in solving the generalized control problem has been
proved through simulations and experiments with different kinematic structures in Sect.
4.3.5. The optimality of the solution obtained via the Opt-eSNS has been validated by
comparing the results with the ones obtained by state-of-the-art QP solvers. The results
of Sect. 4.3.5 have also shown a significant decrease in the computation time when the
Opt-eSNS is warm-started, as well as when the Fast-eSNS is employed. A combination
of these two variants should bring even faster computation times while retaining optimal
control inputs. Such a solution is left as future work. Another possible computation
speed-up might also be obtained by passing the obtained saturation set from one level
of priority to the next one similarly to the solution by Escande, Mansard, et al. (2014).
Such a solution could be investigated and compared to the Opt-eSNS with warm start.

Finally, the performance of the torque-based eSNS during physical Human-Robot
Interaction (pHRI) should be evaluated. In such scenario, special attention should be
put in the consideration of external forces and on the choice of the matrix H to avoid
injection of active energy in the closed-loop system during interaction in the presence of
saturation. An approach going in this direction has been recently proposed by Osorio
and Allmendinger (2022).

4.4 Discrete-Time Implementation Issues

As illustrated in Sect. 4.2, redundancy resolution techniques have been extensively ad-
dressed in the literature and a number of strategies have been proposed over the years.
Although in practice all the corresponding algorithms run on digital controllers, almost
all the solid results consolidated over the years have been found in the continuous-time
domain. Indeed, not so many papers address the study of redundancy resolution methods
considering the discrete-time nature of the dynamic system at hand. Stability aspects of
the inverse kinematics problem have been addressed in the discrete-time domain by Das,
J. E. Slotine, et al. (1988) and De Maria and Marino (1985) proposing Lyapunov-based
arguments. More recently, Bjerkeng, Falco, et al. (2014) and Falco and Natale (2011)
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have instead presented stability analyses in the context of kinematic (sensor-based) con-
trol of redundant robots. The result is a set of necessary and sufficient conditions, leading
to useful guidelines for gain selection in relation to the sampling time. Other works, like
the one by Suleiman, Ayusawa, et al. (2018) have focused instead on taking the sam-
pling time of the discrete-time system as a free variable to increase robustness of the
redundancy resolution algorithm and simplify the task-space planning.

The discrete-time nature of the actual systems at hand is often overlooked in real
applications. Yet, specific choices in the implementations can significantly affect the
behavior of the redundancy resolution algorithm in terms of performance and/or sta-
bility. This section is dedicated to the study of some relevant questions in the field of
discrete-time redundancy resolution. A first study is dedicated to the effect of the inte-
gration method used to compute joint positions on the performance and the robustness
of velocity-based solvers. Then, a convergence analysis is conducted for a velocity-based
redundancy resolution algorithm involving time-dependent task functions, as this aspect
has not yet been investigated in the literature.

To analyze the aforementioned aspects, it is necessary to briefly recall the definition
of a task function from Sect. 3.3.1. For the scope of the following analyses, it is sufficient
to consider the task function as dependent only from the robot joint configuration q ∈
Q ⊆ Rn and the time t ∈ R+

0 . The m-dimensional task function, n ≥ m, is then defined
as

e : (q ∈ Q, t ∈ R+
0 )→ e(q(t), t) ∈ Rm.

The function e is assumed of class C1. Furthermore, the analysis will be limited to
equality constraints. Thus, the corresponding task objectives are considered fulfilled
if e = 0. As already seen in the previous chapter, computing a solution requires the
inversion of the constraint equation at the first-order differential level

ė(q(t), t) = J c(q(t), t)q̇(t) + et(q(t), t) = 0, (4.50)

with J c =
∂e
∂q

being the constraint Jacobian matrix, and et =
∂e
∂t

. In particular, from the
analysis in Sect. 4.3, the solution to (4.50) is computed in a closed-loop fashion as

q̇(t) = J#
c (q(t), t)(−et(q(t), t)− γe(q(t), t)). (4.51)

In deriving (4.51), a constraint reference velocity defined as in (4.5) has been assumed,
with a gain matrix K = γI, γ > 0. Moreover, # denotes a generic right pseudo-inverse
operator. The feedback term in (4.51) ensures an exponential convergence of e to zero,
with a convergence rate depending on the value of γ. Since it inverts the differential
constraint equation (4.50) and embeds an error term, the solution in (4.51) is often
referred to in the literature as Closed-Loop Inverse Kinematics (CLIK) (Balestrino, De
Maria, et al. 1984; Das, J. E. Slotine, et al. 1988; Sciavicco and Siciliano 1986).

Starting from (4.51), the evolution of the joint positions q can be obtained by inte-
gration as

q(t) = q(0) +

∫ t

0

J#
c (q(τ), τ)(−et(q(τ), τ)− γe(q(τ), τ))dτ. (4.52)
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In discrete-time implementations, (4.52) takes the form

qk+1 = qk +

∫ tk+1

tk

J#
c (q(τ), τ)(−et(τ)− γe(q(τ), τ))dτ, (4.53)

where qk = q(tk) and tk = kT , with k ∈ Z+
0 and T being the sampling time. In practice,

the integral on the right-hand side of (4.53) can only be approximated, with a resulting
numerical drift of the solution that is only prevented by the consideration of the feedback
term.

4.4.1 Integration methods: a comparison between Euler and
RK4 methods

A relevant element of CLIK methods is the integration step required to compute the
evolution of the joint positions. As already mentioned, the integral in (4.53) can only be
approximated, in practice. The approximation is typically performed using the simplest
method, i.e., explicit Euler also known as forward Euler. However, the question arises
as to whether using higher order integration methods can significantly affect the perfor-
mance of the redundancy resolution algorithm. A preliminary answer to this question
comes from the work by Sariyildiz and Temeltas (2011), which compares numerical in-
tegration methods of different orders in a trajectory tracking application. The results
show that the choice of the numerical integration method significantly affects the per-
formance in terms of tracking error and simulation time. Additional works (Alsultan,
M. Ali, et al. 2018; Senthilkumar, M. Lee, et al. 2013) study the accuracy obtained when
using Runge-Kutta methods (Kutta 1901; Runge 1895) in the dynamic analysis of simple
kinematic structures for a set point regulation problem. The study in this section makes
contribution to the field by carrying out a detailed comparison of the performance in
different scenarios of a velocity-based CLIK algorithm when using the Runge-Kutta 4
(RK4) method with that of the 1st order explicit Euler method.

The analysis focuses on pure inverse kinematics problems, considering both regulation
and trajectory following scenarios. In other words, the task function is defined as

e(q(t), t) = p(q(t))− pd(t), (4.54)

with p,pd ∈ P ⊆ R7 being the actual and desired pose of the robot end-effector with
respect to a global coordinate system, respectively. As in Sect. 3.3, the pose of the end-
effector is expressed as p = [pT

p pT
o
]T , with pp = [x y z]T representing the position,

and po = [η ϵ]T expressing the orientation in terms of unit quaternion represented by
vectors of dimension 4. Analogously, the desired pose is expressed by the position vector
pp,d = [xd yd zd]

T and the orientation po,d = [ηd ϵd]
T . Thus, for a correct computation

of the orientation error, the task function (4.54), representing the Cartesian error between
p and pd, is rewritten as

e(q(t), t) =

ep

eo

 =

 pp(q(t))− pp,d(t)

η(q(t))ϵd(t)− ηd(t)ϵ(q(t))− S(ϵd(t))ϵ(q(t))

 ∈ R6, (4.55)
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Figure 4.23: KUKA LBR iiwa: initial configuration and desired pose p̄d for Case study
1.

where the quaternion error is considered, with the help of the skew-symmetric operator
S(·). Moreover, by using the transformation matrices (3.7), it is possible to rewrite
(4.50) as

J(q(t), t)q̇(t)− vd(t) = 0, (4.56)

with J being the robot end-effector Jacobian, and vd the vector of desired linear and
angular velocity for the end-effector frame.

As a consequence of the considerations above, the joint position update (4.53) be-
comes

qk+1 = qk +

∫ tk+1

tk

J#(q(τ))(vd(τ)− γe(q(τ), τ))dτ. (4.57)

Starting from the (4.57), a discrete-time solution can be found approximating the
time integral via the explicit-Euler technique. This operation yields

qk+1 = qk + T (J#(qk)(vd(tk)− γe(qk, tk)), (4.58)

which can be rewritten as

qk+1 = qk + T q̇Eul
k

q̇Eul
k = J#(qk)(vd(tk)− γe(tk, qk)).

(4.59)

On the other hand, approximating the time integral via RK4 yields

qk+1 = qk + T q̇RK4
k

q̇RK4
k =

1

6
(r1 + 2r2 + 2r3 + r4)

(4.60)
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Figure 4.24: Case study 1: Cartesian error evolution for Explicit Euler (top) and Runge-
Kutta 4 (bottom) for constant reference pd(t) = p̄d under variation of the gain γ. After
500 iterations with no convergence the simulations are stopped.

with

r1 = J#(qk)(vd(tk)− γe(tk, qk)

r2 = J#

(
qk +

T

2
r1

)(
vd

(
tk +

T

2

)
− γe

(
tk +

T

2
, qk +

T

2
r1

))
r3 = J#

(
qk +

T

2
r2

)(
vd

(
tk +

T

2

)
− γe

(
tk +

T

2
, qk +

T

2
r2

))
r4 = J#(qk + Tr3)(vd(tk+1)− γe(tk+1, qk + Tr3)).

The proposed comparison consists of three case studies carried out in a MATLAB®

simulation environment with a KUKA LBR iiwa 7-DoFs robot (Fig. 4.23). Both con-
stant and time-varying Cartesian references are considered, as well as motions passing
through kinematic singularities. The influence of the feedforward action, vd, is addition-
ally analyzed. Finally, results are presented under variations of the sampling time and/or
the feedback gain. All the simulations employ a classic Moore-Penrose pseudoinverse.

Case Study 1: constant reference

In the first case study, a constant desired Cartesian pose pd(t) = p̄d for the robot
end effector has been set. Thus, vd(t) = 0. The term of comparison in this case is
the number of iterations required to converge to a solution, i.e., to reach the desired
Cartesian pose with a given precision. The initial configuration of the robot, which
can be seen in Fig. 4.23, is q0 = [ π/4 0 −π/2 0 π/4 0]T rad. The resulting
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Initial error (norm) # of iterations # of iterations

Explicit Euler RK4

∥ep0∥ = 0.100 m, ∥eo0∥ = 0.010 19 25

∥ep0∥ = 0.164 m, ∥eo0∥ = 0.026 19 26

∥ep0∥ = 0.190 m, ∥eo0∥ = 0.036 20 27

∥ep0∥ = 0.332 m, ∥eo0∥ = 0.497 24 29

∥ep0∥ = 0.578 m, ∥eo0∥ = 0.567 25 30

∥ep0∥ = 0.689 m, ∥eo0∥ = 0.620 30 31

∥ep0∥ = 0.722 m, ∥eo0∥ = 0.665 31 27

∥ep0∥ = 0.728 m, ∥eo0∥ = 0.608 25 33

∥ep0∥ = 0.744 m, ∥eo0∥ = 0.580 28 29

Table 4.7: Case Study 1: Number of iterations required to converge for constant reference
pd(t) = p̄d under variation of the norm of the initial error e0 and constant gain γ = 1/T .

initial pose is p0 = [0.5657m 0m 0.2290m 0 0 1 0]T , while the desired pose is

p̄d = [0.6157m 0m 0.2290m 0.0049 0 0.9999 0]T . Therefore, the initial value of

e, i.e. the initial Cartesian error, is e0 = [eT
p0

eT
o0
]T , with ep0 = [−0.05 0 0]T m

and eo0 = [0 0.0049 0]T . Figure 4.24 shows the evolution of the Cartesian error over
the number of iterations, under variation of the gain γ. The gain value is chosen as a
fraction of T , so as to make the results independent of the sampling time according to
(4.59)-(4.60).

The same simulation is repeated multiple times, varying the initial error e0. This is
obtained by randomly sampling initial configurations q0 for the same desired pose p̄d.
Table 4.7 reports the results in terms of number of iterations required to converge with
respect to the norm of the initial error.

Case Study 2: time-varying reference

In the second case study, the robot end effector must follow a time-varying Cartesian
reference trajectory, which consists of a circular path with a trapezoidal velocity profile



4.4. DISCRETE-TIME IMPLEMENTATION ISSUES 97

Figure 4.25: KUKA LBR iiwa: initial configuration and reference Cartesian trajectory
(red line) for Case Study 2.

(Fig. 4.25):

pd(t) =



cx + r cos(2πσ(t)− π/2)

cy

cz − r sin(2πσ(t)− π/2)

0

0

1

0


, vd(t) =



−2πr sin(2πσ(t)− π/2)σ̇(t)

0

−2πr cos(2πσ(t)− π/2)σ̇(t)

0

0

0


,

where σ(t) is the path parameter used to plan the trajectory, and c = [cx cy cz]
T and r

represent the center and radius of the circle, respectively. The initial joint configuration
is

q0 = [0 π/4 0 −π/2 0 π/4 0]
T rad,

which produces an initial error

e0 = [0.9541 · 10−4 m 0m −0.9445 · 10−4 m 0 −0.0050 0]
T .

Figures 4.26 and 4.27 show the performance of the two methods in terms of tracking error,
also including the case in which no velocity feedforward is used in the computation, i.e.,
vd = 0. Results are presented under variation of the sampling time T and for a fixed
gain value γ = 1/T .



98 CHAPTER 4. REDUNDANCY RESOLUTION

0 1 2

0

0.5

1

1.5
10

-4

Euler

RK4

0 0.5 1 1.5 2

0

2

4

10
-7

0 1 2

0

0.5

1

1.5

2
10

-4

Euler

RK4

0 1 2

0

0.5

1

1.5
10

-4

Euler

RK4

0 1 2

0

0.5

1

1.5

2
10

-3

Euler

RK4

0 1 2

0

1

2

3

4
10

-3

Euler

RK4

0 1 2

0

0.005

0.01

0.015

0.02

Euler

RK4

7.1987e-09

7.1838e-07

7.3434e-05

Figure 4.26: Case Study 2: Cartesian position error evolution for a time-varying reference
pd(t) and gain γ = 1/T , under variation of the sampling time T , with (top) and without
(bottom) velocity feedforward. Smaller overlapping plots provide zoomed-in views.

Case Study 3: moving through singularities

In the last case study, a time-varying Cartesian reference is generated, so as to force the
robot to move through a kinematic singularity during the execution of the motion. In
this case, besides the tracking performance, smoothness of the resulting joint velocity is
also investigated. The Cartesian trajectory consists of a circular path with a trapezoidal
velocity profile (Fig. 4.28):

pd(t) =



cx + r cos(2πσ(t)− π/2)

cy

cz + r sin(2πσ(t)− π/2)

0

0

1

0


, vd(t) =



−2πr sin(2πσ(t)− π/2)ṡ(t)

0

2πr cos(2πσ(t)− π/2)ṡ(t)

0

0

0


,

where σ(t) is the path parameter used to plan the trajectory, and c = [cx cy cz]
T and r

represent the center and radius of the circle, respectively. The initial joint configuration
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Figure 4.27: Case Study 2: Cartesian orientation error evolution for time-varying refer-
ence pd(t) and gain γ = 1/T , under variation of the sampling time T , with (top) and
without (bottom) velocity feedforward. Smaller overlapping plots provide zoomed-in
views.

is
q0 = [0 1.2879 0 −0.6988 0 −0.4160 0]

T rad,

which gives a corresponding initial error

e0 = [0.0103 · 10−4 m 0m −0.5921 · 10−4 m 0 −0.4816 · 10−4 0]
T .

Figure 4.29 shows the resulting joint velocity evolution over the time produced by the
two methods. Figure 4.30 presents, instead, the performance in terms of tracking error.
All the results have been generated considering a fixed sampling time T = 0.01 s, and
are presented under variation of the gain γ. As an additional comparison, the simulation
is repeated ignoring the feedforward term, i.e., vd = 0. The resulting joint velocity and
tracking error for this case are reported in Figures 4.31 and 4.32, respectively.

Discussion

From the comparison between the (4.59) and the (4.60), it can be easily recognized
that using Runge-Kutta 4 significantly increases the complexity of the algorithm. In
particular, this method requires, for the kth iteration, the computation of four times the
forward kinematics and the Jacobian matrix of the robot. Consequently, four pseudo-
inverses must be computed, which is the most consuming operation in (4.59) and (4.60).
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Figure 4.28: KUKA LBR iiwa: initial configuration and reference Cartesian trajectory
(red line) for Case Study 3.
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Figure 4.29: Case Study 3: Joint velocity using explicit Euler (left) and Runge-Kutta 4
(right) for time-varying reference pd(t) with feedforward when passing through a singu-
larity, for a fixed sampling time T = 0.01 s, under variation of the gain γ.
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Figure 4.30: Case Study 3: Cartesian position (top) and orientation (bottom) error for
time-varying reference pd(t) with feedforward when passing through a singularity, for a
fixed sampling time T = 0.01 s, under variation of the gain γ.

It can then be concluded, that the CLIK with Runge-Kutta 4 is approximately four
times computationally more expensive than the CLIK with Explicit Euler. Furthermore,
the intermediate values vd(tk + T/2) and pd(tk + T/2) might not be available. Thus,
additional computation might be required to compute a suitable estimation of these
terms. In the presented simulations, the desired trajectory is generated with half of the
sampling time to obtain them.

In case of a constant Cartesian reference, the first case study has shown that there
is no real benefit in using Runge-Kutta 4 in the integration step. Explicit Euler seems
indeed to induce faster convergence to a solution with smaller gain values. On the other
hand, the CLIK with Runge-Kutta 4 keeps converging to a solution for a larger range
of gain values (see Fig. 4.24). Only in the case of very large initial error, the difference
in the results seems to be less clear: the CLIK with Runge-Kutta 4 converges in some
cases in less or just slightly more iterations (see Tab. 4.7).

The benefit in using a higher order integration method, such as Runge-Kutta 4,
becomes more evident when following a time-varying trajectory (see the second Case
Study 2). In such a case, significantly smaller tracking error is observed, especially for
larger sampling time and when considering the feedforward term. Indeed, the CLIK with
Runge-Kutta 4 produces an error that is, on average, two orders of magnitude smaller
when compared to the one produced by the CLIK with Explicit Euler. The difference in
the results is instead dramatically reduced when ignoring the feedforward term (see Fig.
4.26).

The last case study shows that using Runge-Kutta 4 produces significantly smoother
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Figure 4.31: Case Study 3: Joint velocity using explicit Euler (left) and Runge-Kutta
4 (right) for time-varying reference pd(t) without feedforward when passing through a
singularity, for a fixed sampling time T = 0.01 s, under variation of the gain γ.

joint velocities when moving through a singularity. This effect becomes more evident as
the gain value increases (Fig. 4.29 and 4.31). This result can be explained considering
that the four terms that appear in the solution in (4.60) are computed evaluating four
slightly different joint configurations, which will be sampled in a neighborhood of the
singular configuration. Therefore, the unpleasant effect of kinematic singularities on the
solution is "filtered-out" in the sum in (4.60). The tracking performance confirms the
results from second case study: with the feedforward term included, using Runge-Kutta
4 produces significantly smaller errors (see Fig. 4.30), whereas no clear difference can
be observed when assuming vd = 0 (see Fig. 4.32). Once again, the CLIK with Runge-
Kutta 4 also proves to keep stability for a larger range of gain values, whereas the CLIK
with Explicit Euler starts diverging at γ = 2/T , as it can be seen also in Fig. 4.30 and
4.32.

Summarizing, the considered case studies show that significant benefits are observed
when using RK4 to track time-varying Cartesian references and move through kinematic
singularities. Moreover, the performed simulations suggest that stability is retained for
larger gain values compared to traditional CLIK algorithms with explicit Euler. On the
other hand, the remarkably increased complexity of the mathematical model does not
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Figure 4.32: Case Study 3: Cartesian position (top) and orientation (bottom) error for
time-varying reference pd(t) without feedforward when passing through a singularity, for
a fixed sampling time T = 0.01 s, under variation of the gain γ.

always guarantee better performance. More specifically, the CLIK implementation using
explicit Euler presents comparable or even better results for constant Cartesian reference
or when ignoring the feedforward term.

4.4.2 Convergence analysis in the discrete-time domain

As extensively pointed out in this thesis, a nice property of including a feedback term in
the definition the constraint reference velocity (see Eq. (4.5)) is that an evolution of the
task function as a (converging) first-order linear system is imposed. This can be better
visualized by substituting (4.51) into the (4.50). Indeed, this operation yields

ė+ γe = 0. (4.61)

In the continuous time domain, the only condition of convergence is γ > 0. However,
limits on the value of γ exist when implementing the CLIK method in the discrete-time
domain. Overcoming such limits might compromise the stability of the discrete-time
system. The work by Falco and Natale (2011) has found sufficient conditions to the
stability of the CLIK algorithm in case of task functions depending only on the joint
coordinates q. In such condition, limitations for the value of γ are found, which depend
on the initial task error and the sampling time. The study in this section extends these
results by considering task functions with an explicit time dependency.

The analysis assumes that explicit Euler is used as integration method, with a sam-
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pling time T . Therefore, the CLIK equation (4.53) can be expressed as

qk+1 = qk + TJ#
ck
(−etk − γek), (4.62)

where J ck = J c(qk, kT ), etk = et(qk, kT ), and ek = e(qk, kT ). Additionally, the study
is based on the following assumptions:

1. ∃σ∗ ∈ R+ : σ(J c(q, t)J
T
c (q, t)) ≥ σ∗ ∀ q ∈ Q, t ∈ R+

0

2. ∃ δ ∈ R+ : ∥J c(q, t)∥ < δ ∀ q ∈ Q, t ∈ R+
0

3. ∃ω ∈ R+ : ∥et(q, t)∥ < ω ∀ q ∈ Q, t ∈ R+
0

4. ∃µ ∈ R+ : ∥∂
2ei(θ)

∂θ2 ∥ ≤ µ ∀q ∈ Q, t ∈ R+
0 , i ∈ [1,m],

where the spectral norm, i.e., the largest singular value of a matrix, is assumed as
matrix norm, and the symbol σ(X) denotes the smallest singular value of the matrix
X. Moreover, ei denotes the ith component of e, whereas θ groups the joint coordinates
and the time variable in a single vector, namely θ = [qT t]T . While assumption 1 aims
at quantifying the remoteness from singularity of J c, the remaining assumptions impose
smoothness constraints on the task definition, as they assume a bounded norm on Q of
both the Jacobian and the Hessian of e. Finally, it is worth noticing that, in view of
assumptions 1 and 2 and the standard properties of the matrix norm, it is

∥J#
c (q, t)∥ ≤ δ/σ∗ ≜ δ′ ∀ q ∈ Q, t ∈ R+. (4.63)

The derivation of the task function dynamics uses Taylor’s theorem with explicit
second-order Lagrange remainders. The Taylor expansion of e(q+ q̃, t+ t̃) around (q, t)
for some (q̃, t) ∈ Rn+1 is given by

e(q + q̃, t+ t̃) = e(q, t) + J(q, t)q̃ + et(q, t)t̃+ r(q, t, ζ), (4.64)

with the Lagrange remainder r being

r(q, t, ζ) =
1

2


q̃T ∂

2e1(q, t)

∂q2

∣∣∣∣
q+ζ1q̃

q̃ t̃T
∂2e1(q, t)

∂t2

∣∣∣∣
t+ζm t̃

t̃

...

q̃T ∂
2em(q, t)

∂q2

∣∣∣∣
q+ζmq̃

q̃ t̃T
∂2em(q, t)

∂t2
t̃

∣∣∣∣
t+ζm t̃

t̃


for some ζ ∈ Rn+1 whose elements all belong to the range [0, 1]. As shown in Lemma
1 of the work by Falco and Natale (2011) assumption 4 implies that r is bounded. In
particular, it is

∃ ν > 0 : ∥r∥ ≤ ν
(
∥q̃∥2 + t̃2

)
. (4.65)
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The goal of the following analysis it to find sufficient conditions to the convergence
of the system (4.62). To this end, (4.64) and (4.62) can be used to derive an expression
of the dynamics of the task function in the discrete-time domain:

ek+1 = ek + TJ ckJ
#
ck
(−etk − γek) + Tetk + rk

= ek − TJ ckJ
#
ck
etk − γTJ ckJ

#
ck
ek + Tetk + rk

= (1− γT )ek + rk

(4.66)

with rk = r(qk, kT, ζ). The analysis is based on the following two lemmas. The first
lemma is a consequence of the comparison principle for discrete-time systems and is a
special case of classical results on recurrence inequalities (Lakshmikantham and Trigiante
2002), whereas the second lemma is specifically built to simplify the proof of the following
theorem.

Lemma 1. Let bh be a nonnegative sequence that satisfies bh+1 ≤ αbh+ c, where α and
c are nonnegative real numbers. If b0 ≤ a0, a0 being the initial condition of the dynamic
system ah+1 = αah + c, then

bh ≤ ah ∀h ≥ 0.

Proof. The proof is by induction. The claim is true for h = 0. Suppose it is true for h;
then, for h + 1, it is

bh+1 ≤ αbh + c ≤ αah + c = ah+1.

Lemma 2. Let γ, T , ν, δ′, and ω be positive real numbers, with γT < 1. Moreover, let
α be the unknown variable of the second-order equation

α2 + bα + c = 0, (4.67)

where b = γT−2−2γT 2νδ′2ω, c = 1−γT+2γT 2νδ′2ω+γ2T 2νδ′2β, and β = T 2ν(δ′2ω2+
1). Equation (4.67) admits two positive solutions smaller than 1 iff

γ < min

(
1

T
,

1− 2Tνδ′2ω

T 3ν2δ′2(δ′2ω2 + 1)

)
and ω ≤ 1

2Tνδ′2
.

Proof. Since γT < 1 and ω > 0, it is c > 0 and b < 0, hence (4.67) always admits two
positive solutions. These solutions are smaller than one iff (Jury stability criterion)

0 <c < 1 (4.68a)
(c+ 1− b)(c+ 1 + b) > 0. (4.68b)

Since it is already c > 0, the condition (4.68a) is satisfied by imposing c < 1. This yields

1− γT + 2γT 2νδ′2ω + γ2T 2νδ′2β < 1

γT (−1 + 2Tνδ′2ω + γTνδ′2β) < 0

−1 + 2Tνδ′2ω + γT 3ν2δ′2(δ′2ω2 + 1) < 0

⇒ γ <
1− 2Tνδ′2ω

T 3ν2δ′2(δ′2ω2 + 1)
and ω ≤ 1

2Tνδ′2
≜ ω2.
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Moreover, the condition (4.68b) is always verified since b < 0, and thus c + 1 − b > 0
while imposing c+ 1 + b > 0 yields

1− γT + 2γT 2νδ′2ω+γ2T 2νδ′2β

+ 1 + γT − 2− 2γT 2νδ′2ω > 0

γ2T 2νδ′2β > 0

,

which is always true under the considered hypothesis.

Theorem 1. Under the assumptions 1–4, if the gain γ, the initial task space error e0,
and the upper bound ω are such that

0 < γ < min

(
1

T
,

1− 2Tνδ′2ω

T 3ν2δ′2(δ′2ω2 + 1)

)
and

∥e0∥ <
β

1− α
and

ω ≤ 1

2Tνδ′2
,

(4.69)

where β = T 2ν(δ′2ω2 + 1), and α is a solution of the second-order equation (4.67), or

0 < γ < min

(
1

T
,
1− 2Tνδ′2ω

Tνδ′2∥e0∥

)
and

ẽ0,l < ∥e0∥ < ẽ0,u and

ω <
1

4Tνδ′2
− νT and

T <
1

2νδ′
,

(4.70)

with ẽ0,l and ẽ0,u solutions of the second-order equation

γ2T 2νδ′2ẽ20 + (γT − 2γT 2νδ′2ω)− β = 0, (4.71)

then the CLIK algorithm in (4.62) ensures the exponential convergence of the task space
error dynamics, i.e.,

∃α ∈ (0, 1), ẽs ∈ [0,∞), ẽt ∈ R : ∥ek∥ ≤ ẽtα
k + ẽs ∀k ≥ 0. (4.72)

Proof. Starting from (4.66), it is possible to obtain the following inequalities:

∥ek+1∥ ≤ |1− γT |∥ek∥+ ∥r∥
≤ |1− γT |∥ek∥+ ν∥TJ#

k (jk + γek)∥2 + νT 2

≤ |1− γT |∥ek∥+ T 2νδ′2∥jk + γek∥2 + νT 2

≤ |1− γT |∥ek∥+ T 2νδ′2(ω2 + γ2∥ek∥2 + 2γω∥ek∥) + νT 2

≤ (|1− γT |+ 2γT 2νδ′2ω + γ2T 2νδ′2∥ek∥)∥ek∥+ T 2νδ′2ω2 + νT 2

(4.73)
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where the bounds in (4.63), (4.65), and assumption 3 have been exploited, together with
standard norm properties. Now, assume that the task error norm is bounded, i.e.,

∥ek∥ ≤ ϕ ∀k ≥ 0, (4.74)

and consider γT < 1. Then, it is possible to rewrite (4.73) as

∥ek+1∥ ≤ α∥ek∥+ β ∀k ≥ 0,

with
α = 1− γT + 2γT 2νδ′2ω + γ2T 2νδ′2ϕ,

β = T 2ν(δ′2ω2 + 1).

It will soon be shown that the condition (4.74) is guaranteed either by the hypothesis
(4.69) or (4.70). To this purpose, consider the scalar linear system

ẽk+1 = αẽk + β,

which presents asymptotic convergence for any α < 1. The system response is given by

ẽk = ẽ0α
k + β

1− αk

1− α
=

(
ẽ0 −

β

1− α

)
αk +

β

1− α
≜ ẽtα

k + ẽs.

In the case ẽ0 < β/(1− α), let choose ϕ = β/(1− α). Therefore, α is implicitly defined
as

α = 1− γT + 2γT 2νδ′2ω + γ2T 2νδ′2
β

1− α
,

that is the equation (4.67) in Lemma 2, which, under the conditions (4.69), admits
solutions α < 1 in view of the result of Lemma 2. Then, from Lemma 1 it results that

∥ek∥ ≤ ẽtα
h + ẽs ∀k > 0,

which proves (4.72) and ensures that (4.74) is verified.
In the case ẽ0 ≥ β/(1 − α), let instead choose ϕ = ẽ0. To have α < 1, the following

inequality must hold

1− α = γT − 2γT 2νδ′2ω − γ2T 2νδ′2ẽ0 > 0,

which is ensured by the condition on γ from (4.70). Then Lemma 1 ensures that the result
(4.72) is obtained. The proof is completed by noting that the condition on ẽ0 ≥ β/(1−α)
generates the following inequality

ẽ0 ≥
β

γT − 2γT 2νδ′2ω − γ2T 2νδ′2ẽ0

that is
(νTδ′2γ2)ẽ20 + (2νTγδ′2ω − γ)ẽ0 + νT (1 + δ′2ω2) ≤ 0, (4.75)

which, under the conditions on ω and T from (4.70) is equivalent to ẽ0,l ≤ ẽ0 ≤ ẽ0,u, with
ẽ0,l and ẽu,u defined in (4.71).

It is finally worth noticing that, by setting ω = 0 and ∥r∥ ≤ ν∥q∥2, it is possible
to verify that in the absence of time-dependent terms in the task function, the obtained
results coherently fall in the ones obtained by Falco and Natale (2011).
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Chapter 5

KUKA Smart Motion Generator

This chapter presents a software component, named KUKA Smart Motion Generator
(KSMG), developed at the KUKA Technology & Innovation Center during the course
of the doctorate study. The software has been developed in the context of the funded
research project Internet of Construction (IoC)1 that aimed at simplifying the program-
ming of industrial robots for prefabrication and on-site construction applications.

KSMG combines the constraint-based programming framework proposed in Chap. 3
with an expression engine that can process symbolic task descriptions, specified following
the methodology formulated in Chap. 2. To generate robot motion, KSMG additionally
embeds the generalized redundancy resolution introduced in Chap. 4. Thus, it imple-
ments the core modules of the stack presented in Fig. 2.11. The software is currently
available within KUKA as research prototype, and a transfer to serial development is
already planned.

5.1 Symbolic Task Description

A key feature of KSMG is the possibility to input task specifications according to a
predefined description language. The symbolic description of a task is composed of four
fields: Context, Motion Description, Constraints, and Stop Condition. The language
syntax is based on the core capabilities of the C++ Mathematical Expression Library
(ExprTk)2, which have been suitable extended to satisfy the requirements of KSMG. For
example, it is possible to refer to geometric primitives and objects from the environment
model, and access their data through suitable operators. Moreover, a set of special
functions allows for the definition of new geometric primitives, and for the specification
of geometric constraints. Each element of the task description is further detailed below.

Context

The Context field allows for the definition of variables, which can conveniently hold
useful data and be reused in the other fields of the task description. For example, it is

1http://www.internet-of-construction.com
2https://www.partow.net/programming/exprtk
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possible to store objects data (objects and geometric primitives from the environment
model are highlighted in blue)

cyl_radius := DeburringTool.Cylinder.radius;

or define parameters that can be later used as inputs for motion planning functions

acc_des := 0.1;
vel_cruise := 0.5;
path_lenght := 0.5;

.

It is also possible to define variable arrays, e.g., to store the coordinates of some points
of interest

p1_ini := [-0.61, 4.3, 0.852];
p1_end := [-0.11, 4.3, 0.852];
p2_ini := [-0.6, 1.2, 1.2];
p2_end := [-0.1, 1.2, 1.2];

.

Motion Description

The Motion Description field allows for the definition of variables whose value depends on
time. Similarly, geometric primitives whose pose varies over time can also be instantiated.
The time dependency is expressed (and later resolved) through the use of the variable
time, which is implicitly defined. KSMG also offers a set of functions (highlighted in
green below), which can be used in the Motion Description field to define specific motion
velocity profiles. For example, the line

s := trapezoidal(time, acc_des, vel_cruise, path_lenght);

defines a path parameter s, whose value varies from 0 to 1 over time, following a trape-
zoidal velocity profile. Moreover, geometric primitives with time-varying data can be
instantiated in the Motion Description field. For example, the following lines

p1 := p1_ini + s*(p1_end - p1_ini);
p2 := p2_ini + s*(p2_end - p2_ini);
P1 := createPoint(‘P1’, p1);
P2 := createPoint(‘P2’, p2);

defines two points, P1 and P2, which moves over time on a linear path with a velocity
profile dictated by the evolution of s.

Constraints

The Constraints field is the core of the task description and enables the specification
of constraints among geometric primitives, according to the methodology illustrated
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Figure 5.1: Architecture overview of the KUKA Smart Motion Generator service.

in Chap. 2. Such primitives can be implicitly defined in the environment model or
originate from the definitions in the two previous fields. KSMG offers a continuously
growing set of geometric constraints, each of which is applicable on a certain subset of
geometric primitives. The following lines, for example, specify that a point TCP defined
on DeburringTool must coincide with the previously defined P1, therefore realizing a
point-to-point tracking application over time. Moreover, a second coincident constraint
is imposed between the point P2 and the line Beam defined on LaserDevice, therefore
implementing a laser tracing application as shown in Sect. 2.2.1

Coincident(P1, DeburringTool.TCP));
Coincident(P2, LaserDevice.Beam));

.

Stop Condition

The last field of the task description specifies the condition(s) under which the execution
of a task should stop, either due to fulfillment of the process requirements or errors.
Thus, expressions in this field must resolve to boolean values. As an example, a task can
be stopped once the planned trajectory involved in the task description has come to its
end point. This situation can be easily monitored by checking whether the value of the
path parameter s has reached the value 1

s >= 1.0 .

5.2 System Overview
KSMG is implemented as a service that accepts client requests containing a symbolic
task description, and responds with a calculated robot motion. Additionally, KSMG
communicates with an external server to synchronize its internal environment model
with the scene the task description refers to. More specifically, geometric data (such
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Figure 5.2: Handling of a service request by KUKA Smart Motion Generator.

as meshes and primitives), as well as kinematic data are transferred from the external
server to the KSMG’s internal environment model. A service request can also contain the
specification of multiple tasks, which KSMG will then attempt to execute sequentially,
returning the calculated robot motion for the entire sequence of tasks.

Figure 5.1 gives an overview of the modules composing KSMG. Although the service
request is directly handled by the Motion Generator, it is mainly elaborated by the Task
Interpreter. Indeed, this module is responsible for validating and compiling the task
description. Possible errors and inconsistencies in the description at this stage cause
the KSMG to return an error message to the client. Furthermore, the Task Interpreter
is able to resolve all the symbols in the task description, by performing the binding to
the appropriate geometric functions or the requested data in the internal environment
model. Finally, the module can evaluate constraint functions and compute their first-
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Figure 5.3: Computation of robot motion by KUKA Smart Motion Generator.

order derivatives. In other words, the Task Interpreter is able to transform the symbolic
task description received by the KSMG into a numeric set of artificial constraints that
follows the formalism introduced in Chap. 3. From this point on, the Motion Generator
has all the necessary data to compute the robot motion. Figure 5.2 summarizes the steps
executed by KSMG in handling a request.

The computation of the robot motion for each task in the task description proceeds
through a sequence of steps, orchestrated by the Motion Generator module. First, it is
verified whether the provided constraints are satisfied at the initial time t = 0. If this is
not the case, the Motion Generator starts the computation of a so-called approach motion.
In this phase, a set of possible target configurations is computed for each robot involved
in the task, such that the constraints at t = 0 are fulfilled. This computation happens
through an iterative employment of the redundancy resolution framework presented in
Sect. 4.3, which is implemented in the Redundancy Resolution Solver module. Since
each search is independent from the others, the calculations can also make use of parallel
computing at this stage. At the end of every search, it is also verified whether the
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Figure 5.4: KUKA.Sim environment with KUKA Smart Motion Generator client exten-
sion.

obtained target configurations cause any collision with the environment or self-collision
of the robot(s). Finally, a valid target configuration is selected for each robot and
provided to the Collision Free Path Planning module. This module employs probabilistic
methods, e.g. the AIT* by Strub and Gammell (2020), to compute collision-free joint
space trajectories for all the robots involved in the approach motion. In case of any
failure during planning, new target configurations are automatically selected from the
valid set and a new planning attempt is performed. At every stage, the collision checking
is performed by the Collision Avoidance module, which can access the environment model
and perform mesh-to-mesh distance calculations.

Once the approach motion computation is concluded, the Motion Generator starts
the computation of the so-called process motion, which will allow for the actual task
execution. To this end, the target configurations computed for the approach motion
are now set as initial configurations. Thus, starting at t = 0 and evolving with a
fixed cycle time (additionally provided by the client), the Task Interpreter evaluates the
constraints in the task description and sets up motion control optimization problems
according to the procedure introduced in Chap. 3. Additional (inequality) constraints
to the optimization problem are provided with the highest priority by the Collision
Avoidance module, to ensure the robots avoid collisions throughout the task execution.
Analogously, inequality constraints are automatically added for each robot to handle joint
limitations. Finally, the generated optimization problem is solved by the Redundancy
Resolution Solver using the framework from Sect. 4.3. In case of any failure, new initial
configurations are selected for the process motion, for which the approach motion will
need to be updated. Thus, a new planning attempt is performed. On the contrary, the
calculation of the process motion ends when the expression in the Stop Condition field of
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(a) (b)

Figure 5.5: Enlargement of the Component Graph panel (a) and KSMG panel (b) from
the KUKA.Sim window in Fig. 5.4.

the task description is verified. Figure 5.3 summarizes the described sequence of steps,
integrating the flow chart from Fig. 5.2.

Optionally, KSMG can also be instructed to plan a final retreat motion, which cause
all the robots in the scene to return to their initial configurations once all tasks are
completed. As for the approach motion, also the retreat motion is computed employing
the algorithms from the Collision-Free Path Planning module.

5.3 KUKA.Sim interface

To facilitate the use of the KSMG service, an extension for KUKA.Sim has been de-
veloped, which allows the user to input a symbolic task description and start a KSMG
client (Fig. 5.4).
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(a) large view.

(b) KUKA LBR iiwa view.

(c) KUKA AGILUS view.

Figure 5.6: Process motion computed by the KSMG service for the task description in
Fig. 5.5b.

KUKA.Sim is the official simulation software from KUKA, specifically developed
for robotics applications. The software allows to create scenes with robots, tools and
a variety of other objects available from a catalogue. Furthermore, it is possible to
synchronize the scene with an external environment model server, which is the same
accessed by the KSMG service. Finally, a number of tools and tabs allows to explore
the topology of the scene and navigate through the available objects and geometric
primitives. For example, the Components Graph panel (left tab in Fig. 5.4) shows the
objects and the geometric primitives of a selected component. For the considered scene,
clicking on the laser device mounted on the KUKA AGILUS shows, for example, the
geometric primitive Beam (Fig. 5.5a), which represents the laser beam emitted by the
device.

The KSMG extension provides instead the Task Description and Execution panel
(right tab in Fig. 5.4). This panel allows the user to create a new task and fill in the
four fields of its symbolic description. Additionally, the panel offers the possibility to set
the simulation cycle time and some utility buttons to save and load task descriptions.
Figure 5.5b shows an enlargement of the KSMG tab from Fig. 5.4, in which the task
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Figure 5.7: Physical cell modeled in KUKA.Sim.

Figure 5.8: Smart Motion Executor panel.

FollowingALine has been created, and a task description provided as in the illustrative
examples of Sect. 5.1. According to such description, the point TCP at the tip of the
deburring tool is commanded to track the point P1, moving on a linear path with trape-
zoidal velocity profile. As the deburring tool is mounted at the flange of the KUKA LBR
iiwa, such a specification will automatically generate motion for this robot. Analogously,
since the geometric primitive Beam is required to trace the moving point P2, the KUKA
AGILUS will also be commanded to move. The button Plan single task allows to
send a request to the KSMG service to solve only the currently selected task. In case
of multiple tasks, the button Plan tasks could instead be used to request the KSMG
service to sequentially generate motion for all the tasks in the task description. Once
the computation is completed, the generated motion can be reproduced via the button
Execute motion. Figure 5.6 shows some snapshots of the process motion computed by
the KSMG service for the two robots involved in the examined task.

Additionally, the generated motion can be directly reproduced on physical robots.
Figure 5.7 shows the cell from which the scene in KUKA.Sim has been modeled. The
interface to the robot controllers is realized through an additional custom panel, named
Smart Motion Executor (Fig. 5.8). Here, it is possible to select the robot(s) to move,
the operating system they run on, and their physical location over the network. Thus,
by clicking the button Execute motion, the computed motion is transferred to the robot
controller(s) as sequence of joint positions and automatically executed. Fig. 5.9 shows
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(a) KUKA LBR iiwa

(b) KUKA AGILUS

Figure 5.9: Execution of the motion generated by the KSMG service on the physical
robots.
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Figure 5.10: Deburring case study from the Internet of Construction project.

some snapshots of the two physical robots executing the motion computed by the KSMG
service.

5.4 Deburring Application
This section presents a deburring application, addressed and solved using KSMG. The
specific case study originates from the IoC project. The task requirement is to debur
along the edges of a metal workpiece, placed on a rigid support that elevates it from
the working table. The task has to be performed by a KUKA LBR iiwa, placed on
the same working table. The deburring tool is mounted at the flange of the robot and
has a cylindrical drill bit. Figure 5.10 gives an overview of the application setup. More
specifically, the left image shows the modeled scene along with the Cell Diagram panel
of KUKA.Sim, from which the hierarchy of objects composing the scene can be seen. It
can be noticed that the cell modeled in KUKA.Sim coincides with the left part of the
cell analyzed in Sect. 5.3. The right image in Fig. 5.10 shows instead the parameters
and the geometric primitives involved in the task specification.

As already discussed in Sect. 2.2.3, the deburring process is characterized by two
parameters. The first one, depth, indicates the desired penetration depth of the drill bit
into the workpiece, whereas the second parameter, angle, represents the desired incli-
nation of the drill bit. Using the two parameters, it is possible to identify the deburring
surface, and therefore the points P1 and P2 that define the line segment the drill bit
should be tangent with at the initial time. Shifting the points along the edges of the
deburring surface over time, it is then possible to accomplish the deburring operation.
As highlighted in Sect. 2.2.3, the combination of the straight workpiece edge and the
cylindrical drill bit originates a deburring surface consisting of a virtual rectangle, gen-
erally internal to the workpiece, which can be used as an additional geometric primitive
in the derivation of the task description.

All the geometric primitives involved in the task description are modeled in KUKA.Sim
as features of the component they belong to (Fig. 5.11). For example, the tool compo-
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nent contains the cylinder embedding the drill bit. Analogously, the workpiece compo-
nent contains the initial points P1 and P2, the line segment that connects them, and the
related internal rectangle representing the deburring surface. All the modeled objects
and primitives can be directly accessed and used in the symbolic task description simply
by referring to their name.

The symbolic task description for the deburring process is given as

Context

edge_length := 0.095;
motion_dir := [0, -1, 0];
acc_des := 0.1;
p1_ini := getWorldPosition(P1);
p2_ini := getWorldPosition(P2);

Motion Description

s := trapezoidal(time, acc_des, vel_cruise, edge_lenght);
p1 := p1_ini + s*edge_length*motion_dir;
p2 := p2_ini + s*edge_length*motion_dir;
segmentP1P2 := createLineSegment(‘segmentP1P2’, p1, p2);
plane := createPlane(‘plane’, Rectangle);

Constraints

Tangent(Cylinder, plane, segmentP1P2);

Stop Condition

s >=1;

, (5.1)

where geometric primitives and constraints are provided according to the analysis in Sect.
2.2.3. Figure 5.12 shows some snapshots of the motion generated by the KSMG service
using a cycle time of 5ms. It can be noticed that both approach and process motions
are collision free. Indeed, the drill bit and the workpiece are the only objects that come
into contact in the scene, as desired. Moreover, the given constraints are fulfilled at all
times, since the drill bit slides on the deburring surface following the provided velocity
profile.

To test the KSMG framework in an even more challenging scenario, the same task is
repeated in the cluttered environment in Fig. 5.13. In particular, the deburring surface
(green rectangle) presents a total length of 0.5m, and extends below a cube with edge
length 0.3m. This significantly reduces the space in which the robot is free to move.
However, thanks to the exploitation of all the available redundant DoFs, KSMG is able
to compute a robot motion fulfilling the task constraints at all time while avoiding any
collision with the environment or with the robot itself (self collisions). At the same time,
joint limits are also respected. The calculations are, as always, automatic and do not
require any change in the task description. Thus, replanning the same task in a different
scene comes with no effort for the user. The same would apply if the robot appointed to



5.4. DEBURRING APPLICATION 121

Figure 5.11: Component Graph panels for deburring tool and workpiece: the selected
geometric primitives are highlighted in the KUKA.Sim scene.

Figure 5.12: Execution of the motion generated by the KSMG service for the deburring
task.

perform the task changed.
Differently from all previous examples, the generated motion is visualized in the

viewer of the internal KSMG environment model. This allows to highlight the collision
checking and distance computations performed by the KSMG algorithms. Indeed, the
blu lines in Fig. 5.13 connects the points of the monitored collision pairs. These are
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Figure 5.13: Execution of the motion generated by the KSMG service for the deburring
task in the cluttered environment.

automatically updated at each instant of time by computing the points at minimum
distance between meshes in the scene.

5.5 Discussion
This chapter has given an overview of the main features of KUKA Smart Motion Gen-
erator, a software component enabling the intuitive programming of industrial tasks for
redundant robots. The software embeds all the concepts and the work presented in this
thesis, from the specification of tasks as sets of geometric constraints, to their formu-
lation within the constraint-based programming framework from Chap. 3, up to the
resolution of redundant DoFs and the computation of the joint commands. Through the
many simulations executed during the course of doctorate study, KSMG has shown the
validity of the ideas developed in this thesis. In particular, the fact that all computa-
tions are automatically generated out of a symbolic task description, which is completely
independent from the specific robot(s) and the scene at hand, makes reprogramming of
an application particularly effortless for the user.

Recalling the programming stack in Fig. 2.11, it is possible to notice that, in its
current state, KSMG implements the lower-level API, in which symbolic constraints can
be directly provided. Extending it to implement the higher-level API outlined in Sect.
2.3 is certainly a direction for future work.
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Conclusion

This thesis provides a solution for the intuitive programming of redundant robots. Al-
though the focus of this work is on the execution of industrially relevant applications,
the methods presented in this thesis are general and could be applied to other fields.
Specific contributions of this thesis include:

• identification of suitable paradigms for intuitive task description, enabling robot
programming to users with limited robotics expertise and capturing the minimum
number of constraints that are necessary to perform a given task;

• formulation of a novel constraint-based programming framework for the automatic
translation of task descriptions (possibly involving multiple robots) into motion
control problems;

• formulation of a novel general framework for hierarchical redundancy resolution
under arbitrary constraints;

• analysis of some critical aspects of discrete-time implementations of redundancy
resolution algorithms, specifically regarding integration methods and convergence
properties;

• presentation of a software component for intuitive programming of redundant prov-
ing the validity of the developed methods.

This work postulates that industrial tasks are more naturally described by spatial
relations (geometric constraints) between objects. Such relations are easily defined and
understood also by non-expert programmers, as they do not involve any specific robotics
knowledge. Moreover, spatial relations enable complete decoupling of the task descrip-
tion from the particular robot(s) appointed to execute the task. Finally, they allow for
the specification of a minimum number of necessary constraints. This way, the robot(s)
are regarded as redundant whenever possible. This thesis additionally suggests that in-
dustrial tasks can be intuitively formulated on two different levels of abstraction. On the
higher level, a task can be represented as an action involving a certain number of ob-
jects and parameters; on the lower level, constraints can be directly specified, exploiting
suitable geometric features of the objects involved.

123
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Intuitive programming also means that, once the task requirements are formulated,
the motion of the robot(s) involved should be automatically computed, possibly exploit-
ing any available redundant DoF. The general framework for constraint-based program-
ming presented in this thesis serves this purpose. Compared to already existing solutions,
the framework does not require the manual specification of additional feature frames or
coordinates, and it is capable of generating dynamically-consistent optimization prob-
lems for motion control. Furthermore, multiple robots with possibly multiple PoC are
automatically handled in a unified fashion. The generality of the framework is enhanced
by the fact that classic programming based on Cartesian frames can be obtained as a
special case, as it is for joint motion commands.

Handling redundant robots implies solving motion control optimization problems.
Here, this thesis presents a general framework for the motion control of redundant robots.
Thanks to a unified formulation of the redundancy resolution problem, the framework can
arbitrary resolve redundancy at velocity, acceleration or torque level. This provides high
flexibility with respect to the different application domains and robot interfaces. The
framework exploits the definition of a generalized control problem, solved using a novel
redundancy resolution algorithm. In particular, the thesis presents the eSNS method,
obtained by extending an existing algorithm from the literature in several aspects. The
eSNS features hierarchical management of priority levels, handling of (equality and in-
equality) constraints defined in any space, task scaling, and a highly configurable cost
function. Additionally, the thesis introduces two variants, Fast-eSNS and Opt-eSNS,
, which tackle important aspects such as computation efficiency and optimality of the
solution.

Redundancy resolution algorithms are implemented on digital controllers, yet the
discrete-time nature of the resulting system is often overlooked. The two studies pre-
sented in this thesis analyze some relevant aspects. The first study consists of a conver-
gence analysis for the solution of equality constraints considering a task function with
time dependency. The study provides sufficient conditions to the convergence of the
redundancy resolution algorithm depending on the value of the gain, the initial value of
the task function, and a third parameter related to "rate of change" of the task func-
tion over time. A second study proposes an investigation on how different integration
methods can affect the performance of discrete-time redundancy resolution algorithms
in terms of stability, accuracy and smoothness of the solution. In particular, the com-
parison between explicit Euler and RK4 in a pure inverse kinematics application shows
that significant benefits are observed when using RK4 to track time-varying Cartesian
references and move through kinematic singularities. On the other hand, explicit Eu-
ler is able to provide good performance in different conditions with significantly lower
computational cost.

Finally, the thesis includes an overview of KSMG, a software component enabling the
intuitive programming of industrial tasks for redundant robots according to the concepts
developed throughout the thesis. Indeed, KSMG includes the specification of tasks as
sets of geometric constraints, their formulation within the constraint-based programming
framework proposed in Chap. 3, and the computation of the joint commands with
automatic redundancy resolution using the methods in Chap. 4.

The methodologies proposed in this thesis already find applications in industry. In
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particular, KSMG is used within the KUKA Technology & Innovation Center to intu-
itively program multi-robot industrial applications in the context of research projects,
and an official integration in KUKA.Sim is already planned. Nevertheless, the topics
discussed in this thesis open to many future extensions. First of all, the higher level
API depicted in Sect. 2.3 could be implemented in KSMG to prove its validity and
effectiveness in modeling task requirements. The task description itself could also be
further elaborated, so as to a find a suitable model for the description of tasks involving
force interaction. This would also require an extension of the constraint-based program-
ming framework presented in Chap. 3, to mathematically support the handling of force
constraints. Such development would enable intuitive programming of a lot more appli-
cations from other relevant robotics fields. A critical aspect of the lower level API in
Sect. 2.3 is the possibility of unintentional design of conflicting geometric constraints.
Suitable strategies could be therefore developed to avoid such a case or to promptly
detect and inform the user about it. Also the redundancy resolution framework from
Sect. 4.3 offers a number of possible extensions. Most importantly, a combination of the
Fast-eSNS and Opt-eSNS would bring faster computation times while retaining optimal
control inputs. Preliminary work has already been carried out in this direction, showing
promising results. Finally, the convergence analysis from Sect. 4.4.2 could be extended
to the case of multiple priority levels.
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