
Abstract

Nowadays, human-robot collaboration (HRC) is an important topic in the industrial

sector. According to the actual regulations, the robot no longer needs to be isolated

in a work cell, but a collaborative workspace in which human operators and robots

coexist can be acceptable. Human-robot interaction (HRI) is made possible by

proper design of the robot and by using advanced sensors with high accuracy, which

are adopted to monitor collaborative operations to ensure the human safety. Goal

of this work is to implement a fuzzy inference system, based on the ISO/TS 15066,

to correctly compute the minimum protective separation distance and adjust the

robot speed by considering di�erent possible situations, with the aim to avoid any

collisions between operators and robots trying to minimize cycle time as well.

v



Riassunto

Al giorno d'oggi, la collaborazione uomo-robot (HRC) è un importante argomento

nel settore industriale. Secondo le normative attuali, il robot non ha più bisogno di

essere isolato in una cella di lavoro, ma può essere accettabile uno spazio di lavoro

collaborativo in cui convivono operatori umani e robot. L'interazione uomo-robot

(HRI) è resa possibile dalla corretta progettazione del robot e dall'utilizzo di sensori

all'avanguardia con elevata precisione, i quali vengono utilizzati per monitorare le

operazioni collaborative per garantire la sicurezza dell'uomo. L'obiettivo di questo

lavoro di tesi è di implementare un sistema di inferenza fuzzy, basato sulla ISO/TS

15066, per calcolare correttamente la distanza minima di separazione protettiva e

regolare la velocità del robot considerando diverse situazioni possibili, al �ne di

evitare qualsiasi collisione tra gli operatori e i robot cercando di ridurre al minimo

il tempo ciclo.

vi



Contents

1 Introduction 1

1.1 Safe Interaction between Human and Robot . . . . . . . . . . . . . . 2

1.2 Collaborative Applications Safety . . . . . . . . . . . . . . . . . . . . 3

1.3 Risks Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 ISO Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 SSM state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Hardware and Software 20

2.1 Microsoft Kinect v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Intel RealSense D435 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 RViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 MoveIt! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Point Cloud Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Human-Robot Interaction 32

3.1 Perception System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Intrinsic camera parameters . . . . . . . . . . . . . . . . . . . 34

3.2.2 Extrinsic camera parameters . . . . . . . . . . . . . . . . . . . 37

3.3 Human Detection and Tracking . . . . . . . . . . . . . . . . . . . . . 41

3.4 Human-Robot Separation Distance . . . . . . . . . . . . . . . . . . . 45

vii



CONTENTS

3.5 Estimation of operator and Robot velocities . . . . . . . . . . . . . . 47

4 Fuzzy Logic 51

4.1 What is Fuzzy logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Types of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Operations on Fuzzy Sets . . . . . . . . . . . . . . . . . . . . 55

4.3 Membership Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Fuzzy Inference Process . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Fuzzy Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Fuzzy Inference System 64

5.1 Methods of FIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Mamdani FIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.2 Takagi-Sugeno FIS . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Comparison between the two Methods . . . . . . . . . . . . . 69

5.2 ROS-Simulink interface . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Trajectory Scaling 76

7 Experimental results and Validation 79

8 Conclusion and Future developments 86

References 87

viii



List of Figures

1.1 LABOR logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Example of a manual assembly operation where the operator shares

the work space with a robot. . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Relations in the conformity to the Machinery Directive scheme. . . . 4

1.4 ISO/TS 15066 scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Operator in a dangerous (red) zone. The warning zones are in orange

and yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Example chart for TS, illustrating the speed (X axis, [mm/s]) and

payload (a, in %) on the stopping time (Y axis, [s]). . . . . . . . . . . 18

2.1 Microsoft Kinect v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Intel RealSense D435 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 ROS logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 RViz logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 MATLAB logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 MoveIt! logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 MoveIt! System Architecture. . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Transformations between 3D representations. . . . . . . . . . . . . . . 29

2.9 Point Cloud Library logo. . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Experimental set-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Example of intrinsic parameters estimation with a chesss. . . . . . . . 34

3.3 Example of real-time executable viewer. . . . . . . . . . . . . . . . . . 35

3.4 Intel RealSense D435 intrinsic parameters. . . . . . . . . . . . . . . . 37

ix



LIST OF FIGURES

3.5 Experimental set-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Implemented HDT pipeline. . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Identi�cation of the minimum distance points. . . . . . . . . . . . . . 46

3.8 Multi-humans tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Estimation of operator velocity. . . . . . . . . . . . . . . . . . . . . . 50

4.1 Di�erence beetween fuzzy and traditional logic. . . . . . . . . . . . . 52

4.2 Intersection and Union on Fuzzy Sets. . . . . . . . . . . . . . . . . . . 55

4.3 Examples of membership functions. . . . . . . . . . . . . . . . . . . . 58

4.4 Features of membership function. . . . . . . . . . . . . . . . . . . . . 61

4.5 Defuzzy�cation methods. . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Functional blocks of FIS. . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Fuzzy Logic Designer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Fuzzy inference system. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Problem of the scalar product. . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Implementation of Simulink scheme. . . . . . . . . . . . . . . . . . . . 70

5.6 Fuzzy Logic Controller with Ruleviewer: Interactive mode. . . . . . . 72

5.7 Build Model con�guration. . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Relation between d and k. . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 Robot con�gurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 FIS input variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 FIS output variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Experiment: An operator enters the shared workspace while the robot

is moving. The top plot shows the estimated distance robot-operator

(d), the protective distances proposed by the regulation without sens-

ing (SISO) and the protective distance proposed by the work (S). The

bottom plot shows the trajectory scaling factor k, the time derivative

of the distance ḋ and the velocity scalar product. . . . . . . . . . . . 84

x



List of Tables

1.1 Most important EHSR families in collaborative robotics. . . . . . . . 8

1.2 Stopping categories as de�ned in IEC60204-1. . . . . . . . . . . . . . 14

2.1 Microsoft Kinect v1 speci�cations . . . . . . . . . . . . . . . . . . . . 21

2.2 Intel RealSense D435 speci�cations . . . . . . . . . . . . . . . . . . . 22

3.1 Linear Kalman Filter equations. . . . . . . . . . . . . . . . . . . . . . 49

4.1 Pros and cons of fuzzy logic. . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 The most important fuzzy operations. . . . . . . . . . . . . . . . . . . 57

4.3 Fuzzy membership functions. . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Fuzzy rules: [S] Small, [M] Medium, [H] High, [N] Negative, [P] Pos-

itive, [∼] any. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Case study and available hardware. . . . . . . . . . . . . . . . . . . . 79

7.2 Constant parameters of S. . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



List of Algorithms

1 P d
i computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 ds computation and closest cluster identi�cation . . . . . . . . . . . . 43

xii



Chapter 1

Introduction

The work tackles the human-robot collaboration problem by following the line of

the current regulations and introducing a new approach to be used in manufacturing

industry. The novel method assures human operators safety, without modifying the

robot prede�ned path and de�ning a safety metric to scale robot trajectory only

when indispensable, thus trying to maximize the production time.

This work is carried out in the framework of the LABOR (Lean robotized Assem-

Bly and cOntrol of composite aeRostructures) European project [1], which has the

objective to propose novel robotized assembly paradigms of aircraft fuselage panels.

Figure 1.1: LABOR logo.

Until recently, the aerospace industry was still conservative and companies tended

to use successful assembly methods that had already been proven to work in the past.

Nowadays, many assembly sub-operations try to exploit robotics, e.g., drilling, fas-

tening and sealing tasks. These operations are no longer manually performed by

human operators but by industrial robots or by large automated machines dedi-

1



CHAPTER 1. INTRODUCTION

Figure 1.2: Example of a manual assembly operation where the operator shares the

work space with a robot.

cated to assembly of speci�c parts. However, there are some detailed operations

which require human capabilities and that must be still executed by operators. This

is the case of hybrid metal and composite structures, where, after the drilling oper-

ation, some parts have to be manually removed for further manual operations, like

deburring, and then re-installed on the skin panel before the sealing and riveting

operations, as shown in Figure 1.2.

This requires to setup a robotic cell that has to foresee the presence of a human

operator, hence the necessity to monitor the shared workspace.

1.1 Safe Interaction between Human and Robot

Real-time workspace monitoring for human-robot coexistence is not an easy problem

to solve. Even more, implementing strategies to maximize the production time and

preserve human safety at the same time is a research challenge. The approach

proposed here is to adopt a fuzzy inference logic that can update the planned robot

velocity in real-time according to robust perception data and a set of rules formulated

2



CHAPTER 1. INTRODUCTION

based on a risks analysis, explained in detail in Section 1.3. This can lead to a novel,

acceptable solution.

Ensuring the safety of a human operator is the main purpose of the current

research of industrial collaborative robotics. The workspace sharing involves the

continuous human exposure to the presence of machinery. Section 1.2 provides a

summary of the minimum and essential elements of reference for the use of collab-

orative solutions.

1.2 Collaborative Applications Safety

The collaborative applications are made by automated systems in strong interac-

tion with the operator, and therefore fall within the general framework of machine

safety regulated by the Machinery Directive 2006/42/EC [2], in force in the version

transferred in national legislation D.Lgs. N. 17/2010. The purpose of the Machinery

Directive is to protect the operator, the use of machinery conditions, the prevention

of accidents at the workplace and the improvement of health conditions (ergonomics,

exposure, etc.). The European legislation, through the various directives, aims to

establish homogeneous, fair and shared rules for the common market, both outside

and inside the European borders. The common rules are designed to safeguard a

real competition on the quality of artifacts and systems, starting from minimum

levels of guarantee equal for all, clearly extended to non-EU imports.

Essential Health and Safety Requirements (EHSR), i.e., a list of objective ele-

ments of human safety in the use of machinery, represent a series of characteristics

that the machinery must present during its entire life cycle (design, installation,

transport, maintenance, etc.) to be considered sure. The speci�c way to obtain

a result of compatibility with the EHSR (CE conformity) is twofold: or it proves

punctually with the analytical description of the design and commissioning process

of compliance with the EHSR, or the harmonized Technical Standards are adopted.

Figure 1.3 shows the relations between Machinery Directive and the harmonized

Technical Standards.

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Relations in the conformity to the Machinery Directive scheme.

Often, in the case of industrial robotics, and collaborative robotics in particular,

the Technical Standard presents a limited number of direct information (e.g., a

limit distance, or a maximum speed, etc.). Given the �exibility of the robots and

the scale of the possible application results, in fact, the Technical Standards mainly

contain general guidelines for compliance with the EHSR. They become, therefore, a

design tool, where the experiences and the internationally agreed safety requirements

are condensed. The adoption of the Technical Standards of product guarantees to

proceed to such Analysis and Evaluation in a complete way.

The harmonized Technical Standards recognized by the European Committee

for Standardization (CEN) are divided into three families, based on International

Organization for Standardization (ISO):

• Type A standards: basic standards, with general principles and methodologies

common to all types of machines. The risk analysis method in ISO 12100 [3]

belongs to this type;

4



CHAPTER 1. INTRODUCTION

• Type B regulations: rules regarding safety aspects related to groups of ma-

chines or devices. The general calculation of the safety distances referred to

in ISO 10218-2 [4] belongs to this group;

• Type C standards: speci�c rules for a particular family of machines charac-

terized by homogeneous applications and shapes. They are more limited than

type B. ISO 10218 belong to this group. For industrial robotics, including

collaborative robotics, the product standards are developed internationally by

ISO/TC 299 WG3 [5].

A type C standard, if present and relevant, always takes precedence over the

other types: the valid requirements are those formulated according to the product

standards for the purpose of the Presumption of Compliance.

The EHSRs are mainly addressed to safety and ergonomics in the use of machin-

ery, therefore they represent the implementation goal of an application. Even if not

explained, all aspects related to the perception of robots and to the cognitive/emo-

tional involvement of close interaction should not be neglected during design and

use. Although generally valid for automatic machines, EHSRs translate into special

implementation requirements for collaborative robots. Table 1.1 shows the most

relevant EHSRs in the context of a collaborative experience.

EHSR families Description

1.2.1 Control systems se-

curity and reliability of

1.2.2 Control devices Group of machinery design requirements

(hardware) according to the principles of

functional safety. They are to be veri�ed for

robots adoption (manipulators, mobile units,

etc.), tools and accessory devices, and any other

1.2.3 Start

1.2.4 Stop

5



CHAPTER 1. INTRODUCTION

1.2.5 Command or oper-

ating mode selection

device that is built for the robot system. This

group of indications represents the relevant

technical pre-requisite for the safety of the

machines used in each application.1.2.6 Power supply fail-

ure

1.3.3 Risk due to the fall

and to the projection of

objects

Group of requirements in common with

planning considerations and layout setting.

Borders and surfaces, similarly, belong to the

sphere of design of the spaces and objects

present in the system (e.g., tools and

equipment).

1.3.4 Risks due to sur-

faces, edges or corners

1.3.7 Risks due to moving

parts

1.3.8 Choice of protec-

tion against the risks

arising from moving

parts

A group of requirements concerning movement

and the most immediate and understandable

e�ect of interaction. The drafting of the EHSRs

of this group is certainly oriented towards the

traditional condition of risk management in

automation: separation and adoption of

shelters. In this group, the requirements must

therefore be interpreted as regards the forms of

protection from movements, and intended as

"not applicable" with regard to the adoption of

physical safeguards.

1.3.9 Risks of uncon-

trolled movements

1.4.1 General require-

ments for guards and

protection devices

6



CHAPTER 1. INTRODUCTION

1.4.2 Special require-

ments for repair

1.4.3 Special require-

ments for protective

devices

1.5.1 Supply of electricity

1.5.2 Static electricity

1.5.3 Energy di�erent

from that electricity

1.5.4 Assembly errors Very heterogeneous group of requirements,

which in collaborative applications takes the

general notion of various access to machinery.

In traditional discipline, operations and risks

are usually or often well separable, and

operator interventions generally infrequent. In

collaborative applications, accesses for changes

and maintenance are more common and access

to auxiliary systems (air, power, etc.) more

exposed. They should therefore not be

underestimated and considered in a broader

and more complex way.

1.5.15 Risk of slipping,

tripping or falling

1.5.16 Eletric shock

1.6.1 Machinery mainte-

nance

1.6.2 Access to opera-

tion positions and service

points

1.6.3 Isolation of energy

sources

7



CHAPTER 1. INTRODUCTION

1.6.4 Operator interven-

tion

Table 1.1: Most important EHSR families in collaborative robotics.

ISOs 10218-1, 10218-2, and the upcoming ISO Proposed Draft Technical Speci-

�cation (TS) 15066 are brie�y described in Section 1.4, with a particular focus on

speed and separation monitoring (SSM) in Section 1.5, since in this work, a strategy

to handle the operators safety in industrial SSM scenarios is investigated.

1.3 Risks Analysis

Risk Analysis is strongly proposed by law and practice as the key of the security

management of collaborative solutions, throughout the life cycle of applications. The

applications are designed to facilitate the operator, changing the way they work: the

interaction conditions are varied, each characterized by its own particularity even

when using the same type of robot. Even in the variety of applications, it is possible

to reduce the conditions of interaction to homogeneous families of cases, but it is

nevertheless possible to completely standardize the behaviors and details of a robotic

system.

The safety life cycle starts from the birth of the system, from the moment in

which the application speci�cations are conceived and, identi�ed the �rst hazards,

they estimate the risks and prepare the protection measures, considering all the

phases of use robots, including programming and installation.

The distinction between "risk" and "danger" is very clear and clear according to

the ISO 12100 [3]:

• Damage: physical injury or damage to health;

• Danger: damage potential source;

• Risk: measure of the possibility of transforming the danger into damage.

8



CHAPTER 1. INTRODUCTION

As regards collaborative applications, he dangers lurk in all situations from which

a wound or injury (damage) due to the movements of the robot, to the actions

performed by or through the mounted tools, to the interaction with the surrounding

environment can result. It is not relevant, however, how much an event involving a

robot is dangerous, but how risky it is.

To simplify and make this concept quanti�able, ISO 12100 has de�ned the fol-

lowing separate concepts of risk:

• Gravity: entity of the damage resulting from the danger; physical injury or

damage to health;

• Probability of the damage occurrence: measure of the e�ective transformation

of the danger into reality.

In traditional industrial robotics, this concept of combination of severity and

probability has been translated into a high risk estimation by de�nition. Considering

the dangers of a mechanical nature, or any condition of interaction with the machine

organs (links or tools) in motion, the most obvious result is an injury because the

machine has moving masses and rigid joints that transfer large amounts of energy.

The direct consequence of this standard risk assignment is twofold:

• the only way to reduce the risk is to completely prevent the occurrence, not

being able to vary the nature of the intensity of the danger. In terms of

regulations, the requirements to be adopted and veri�ed to obtain the required

prevention are illustrated by the protection means and by the measures to

prevent unexpected movements [4];

• the components of the command functions used to prevent the the occurrence

of danger must have a high level of reliability.

The risk estimate in collaborative robotics, on the other hand, recovers the con-

cept of speci�c analysis of the dangerous event, in order to identify the most appro-

priate risk reduction measure: in addition to preventing the occurrence, in fact, one

can act on the other components, as for example on gravity, reducing it. Increasing

the number of variables that can be estimated in the risk assessment, the following

scenarios are opened:

• for collaborative robotics applications there are no evaluations prepackaged.

9



CHAPTER 1. INTRODUCTION

In contrast to Section 5.10 of ISO 10218-2 [4], dedicated to the means of protec-

tion (guards, interlocks, muting, etc.), Section 5.11 dedicated to collaborative

modalities and, above all, ISO/TS 15066 [6], o�ers a series of indications of

method and veri�cation;

• technical or design solutions that reduce one or more factors risk are multiple

and contribute or are alternatives to the same e�ectiveness of protection. Be-

ing able to reduce the gravity of the danger, it is possible to admit a greater

probability of occurrence of the danger itself, obtaining the same danger. If

the danger of interference with a moving robot is less severe, the possibility

of it happing may be tolerated.

Proper analysis of risk limitation requirements is necessary also for the commu-

nication of project choices. The assumptions and veri�cations of the whole analysis

must be understood and shared even by those who use them: users and application

controllers.

1.4 ISO Analysis

Requirements and guidelines concerning the inherent safe design, measures for pro-

tection and information for use of industrial robots are speci�ed in ISO 10218-1 [7].

It provides both the description of basic hazards associated with robots and require-

ments aimed to eliminate or su�ciently reduce the associated risks. However, in

this part of ISO 10128 the robot is not considered as a complete machine. Noise

emission is excluded from ISO 10128-1 since it is not a signi�cant hazard for the

robot alone. Non-industrial robot are not matter of this part of the ISO but general

safety principles from ISO 10128 can be applied to them, too.

ISO 10128-2 [4] provides safety requirements to integrate industrial robot, in-

dustrial robots system, as previously speci�ed in ISO 10128-1, and industrial robot

cell(s). Design, manufacturing, installation, operations, maintenance, decommis-

sioning as well as the related necessary information, and the component devices of

the industrial robot system or cell are included in the integration. This part of ISO

10128 identi�es and describes which hazards and hazardous situations are related to

10



CHAPTER 1. INTRODUCTION

these systems, and gives requirements in order to eliminate or adequately mitigate

the connected risks. Hazards associated with processes (e.g., laser radiation, ejected

chips, welding smoke) and the respectively requirements are also handled in ISO

10128-2.

ISO/TS 15066 [6] provides requirements concerning safety for collaborative in-

dustrial robot systems and the work environment, expanding requirements and guid-

ance on collaborative industrial robot operations speci�ed in ISO 10218-1 and ISO

10218-2. ISO/TS 15066 applies to industrial robot system, as described in both ISO

10218, and address four collaborative scenarios, as shown in Figure 1.4:

1. Safety-rated monitored stop (SMS), which requires that the robot stop when

a human is in the collaborative workspace;

2. Hand guiding (HG), which allows the operator to hand-guide the robot through

an hand guiding equipment (e.g., an analog button cell attached to the robot)

and an emergency stop conforming to International Electrical Commission

(IEC) 60204-1 [8];

3. Speed and separation monitoring (SSM), which monitors the robot speed

according to the separation distance from the operator;

4. Power and force limiting (PFL), which limits the momentum of the robot

such that the potential for operator injury upon impact is minimized, ac-

cording to the established injury standards [9].

11



CHAPTER 1. INTRODUCTION

Figure 1.4: ISO/TS 15066 scenarios.

Therefore, the safety collaborative scenarios can be divided into two categories:

post-collision and pre-collision [10]. A post-collision system reacts after the physical

impact occurs between the robot and the operator. Three main drawbacks can be

highlighted: the �rst one is that a collision could be dangerous if the robot limits

are poorly de�ned; the second one is that any collision will halt task execution,

leading to the decrease of the production time; and the last one is that, especially

in industrial applications, the robot is equipped with sharp tools, e.g., drilling tools,

whose impact can cause serious injury. Human safety can be assured by minimizing

the energy transmitted during the contact [11] and by using robots endowed of a

compliant structure or sensors for assessing force exchange when the impact occurs,

e.g., force or tactile sensors [12].

On the other hand, a pre-collision scheme makes use of exteroceptive sensors

to detect humans and prevent collisions. Motion capture systems, range sensors or

arti�cial vision systems [13] are crucial in the case of distance monitoring, which is

the most suitable approach for pure coexistence in a collaborative workspace. The

dangerous zone around the robot is monitored and any operator that accesses it,

makes the robot slowing down, until the full stop when the human is too close.

12



CHAPTER 1. INTRODUCTION

Several researchers proposed di�erent methods for representing humans and robots

geometry and implement pre-collision strategies: a volumetric representation of the

areas occupied by operators and by the robot has been studied in [14] to slow down

or stop the robot when these areas overlap; as well as, [15] proposes a potential �eld

method to be used to generate a collision free path, while an advanced approach

based on human detection and intention estimation is described in [16]. A further

approach is presented in [17] where a safety index is modeled to modify the robot

trajectories and preserve the cooperative task. Many of these approaches rely on

evasive actions to increase safety. However, in industrial setting, it is generally

recommended to follow the robot prede�ned path without deviating from it. Relative

position and velocity of the human operator and the robot can be used to de�ne a

safety metric in an industrial setting for trajectory scaling [18].

Always about pre-collision, stopping any powered, mechanical system relies on

any of three possible procedures described by IEC60204-1 [8]: removing power to

the drives, applying brakes, and actively controlling motors to counter motion. The

initiation of a stopping function can be triggered via automatic mechanisms in-

ternal to the equipment (e.g., software watchdog systems, electronic monitors, or

mechanical limit switches), external safeguards, or manual switches (push buttons,

pull cords,or pedal-operated switches). According to IEC60204-1, three categories

of stop functions based on the removal of power, application of brakes, and control

of the equipment during the braking function are speci�ed. These three categories,

showen below, are summarized in Table 1.2:

• Stop category 0 (STOP0): the equipment is stopped immediately by remov-

ing power to the actuators and applying the brakes. This results in an "un-

controlled stop", in that the purpose is to stop the equipment as quickly as

possible, and does not ensure that the motion of actuators follow a prescribed

path;

• Stop category 1 (STOP1): the equipment undergoes a controlled stop (i.e.,

power to the actuators is maintained) until the equipment comes to a complete

stop, at which point the power is removed and the brakes applied;

• Stop category 2 (STOP2): the equipment comes to a controlled stop, but the

13



CHAPTER 1. INTRODUCTION

brakes are not applied nor is the power removed.

Stop category Controlled

(Yes/No)

Power removed

(Yes/No)

Brakes applied

(Yes/No)

STOP0 No Yes Yes

STOP1 Yes Yes Yes

STOP2 Yes No No

Table 1.2: Stopping categories as de�ned in IEC60204-1.

In this work, a stop category 2 (STOP2) has been considered.

The main goal for the investigation of a strategy to handle the operators safety

in industrial SSM scenarios is reasonably scale down the size of the protective zone

around the robot and improve productivity, taking into account safety regulations.

The robot behavior is modi�ed, in terms of trajectory scaling, only if there is a

real and imminent risk of collision. The operator approach into the collaborative

workspace is deeply analyzed to generalize the computing method of the safety index

and face the extreme variability and unpredictability of human behaviours.

The devised solution computes the points at minimum distance between the

robot and the closest human and presents several desirable features with respect

to other solutions cited above; many of those approaches rely on evasive actions to

increase safety. However, in industrial setting, it is generally recommended to follow

the robot prede�ned path without deviating from it, especially in complex work

cells, where clashes are likely to occur. The main characteristics of the proposed

approach are:

• it considers the whole surface of human operators, without skeleton-based

techniques and without approximating the body to a single point of mass;

• it considers the whole robot kinematic chain, the entire volume and possible

tools, without factoring only a singular representative coordinate of the robot

(e.g., the end e�ector);

• it explicitly takes into account the regulations;

14



CHAPTER 1. INTRODUCTION

• it allows for the provision that the human speed, vH , may be estimated directly

and it is not assumed constant;

• it considers the relative directions of velocities, which are not factored into

the equation proposed by the actual ISOs;

• it does not modify the robot programmed path and it does not require the

task to be aborted.

1.5 SSM state-of-the-art

SSM allows the robot system and the operator to move concurrently in the collabo-

rative workspace. Risk reduction is achieved by maintaining at least the protective

separation distance, S, between the human operator and robot at all time. During

robot motion, the robot system never gets closer to the operator than S. When the

Euclidean separation distance, d, is equal or less than S, the robot system stops,

before it can impact the operator, as shown in FIgure 1.5. When the operator moves

away from the robot system, the robot system can resume the motion automatically

while maintaining at least the protective separation distance.

Figure 1.5: Operator in a dangerous (red) zone. The warning zones are in orange

and yellow.

15



CHAPTER 1. INTRODUCTION

ISO 13855 [19] is the �rst document which investigates about the issue of safe-

guards positioning for human safety from stationary, active machinery. Speci�c

parameters based on values for approach speeds of parts of the human body are

provided in this ISO. The determination of minimum distances to a hazard zone

from the detection zone or from actuating devices of safeguards follows a methodol-

ogy given in ISO 13855. The values of speed for approaches such as walking speed

and upper limb movement are time tested and proven in practical experience. In

this way is built this International Standard, which gives guidance for typical ap-

proaches, except running, jumping or falling. Safeguards taken into consideration in

this International Standard are equipments for electro-sensitive or pressure-sensitive

protection, two-hand control devices, and interlocking guards without guard locking.

The document suggests to compute S as

S = vT + C, (1.1)

where v is the approach speed of human body parts.

Its value varies according to d

d =

2.0 m/s if d < 0.50 m

1.6 m/s otherwise,

(1.2)

where 2.0 m/s is assumed to be as the maximum operator speed. T is the total

system stopping performance time, in seconds, and it is a combination of the time

required by the machine to respond to the operator's presence (i.e., TR) and the

response time of the machine which brings the robot to a safe, controlled stop (i.e.,

TS). C is the intrusion distance safety margin, which represents an additional dis-

tance, based on the expected intrusion toward the critical zone prior to the actuation

of the protective equipment.

From Equation 1.1, ISO/TS 15066 updates the S meaning by including robot

dynamic properties. When the robot system reduces its speed, the protective sepa-

ration distance decreases correspondingly, i.e.,

16



CHAPTER 1. INTRODUCTION

S(t0) ≥
∫ τ=t0+TR+TS

τ=t0

vH(τ)dτ +

∫ τ=t0+TR

τ=t0

vR(τ)dτ

+

∫ τ=t0+TR+TS

τ=t0+TR

vS(τ)dτ + (C + ZS + ZR).

(1.3)

In Equation 1.3, vH is the "directed speed" of the closest operator which travels

toward the robot, vR is the speed of the robot in the direction of the operator,

vS is the directed speed of the robot in course of stopping. The remaining terms

represents uncertainties: the intrusion distance C is based on the operator reach,

ZR is the robot position uncertainty, and ZS is the operator position uncertainty

(i.e., the sensor uncertainty). Finally, t0 is considered the current time.

The main issue of ISO 13855 [19] is that the separation distance was initially

intended for static machinery, not for dynamic and recon�gurable robotic systems.

Therefore, extending what is contained in the standard to the case of industrial

robotics is not trivial. Nevertheless, ISO/TS 15066 tries to make a contribution to

the HRC problem and describes S using the following linear function

S = (vHTR + vHTS) + (vRTR) + (B) + (C + ZS + ZR) (1.4)

where B is the Euclidean distance travelled by the robot while braking. Note

the one-to-one correlation between Equation 1.3 and the linear relationship Equa-

tion 1.4. The �rst term in parentheses describes the contribution attributable to the

operator's change in location in the time necessary to bring the robot to a full stop

from its current speed. The second term describes the contribution attributable to

the robot system reaction time, before it initiates the braking sequence. The third

term describes the distance travelled by the robot during its braking. Finally, the

fourth term describes the possible distance of intrusion into the robot work volume as

a function of the operator reach and the uncertainty of the sensory system and robot

kinematics. The values of vH , TS, B and C can be found in the safety standards:

the values of vH and C are given in ISO 13855, while guidelines for evaluating TS

and B are given in Annex B of ISO 10218-1 and they result from measurements that

17



CHAPTER 1. INTRODUCTION

directly depends on the robot system under test. If the stop occurs in category 0,

in accordance with IEC 60204-1, the measurements shall be made in the maximum

operating conditions envisaged (i.e., maximum speed, maximum load and maximum

displacement). For the stop in category 1, the stop time and the distance depend on

the speed, the load and the extension, and shall be stated for 33%, 66% and 100%

of maximum, unless these values can be derived from the maximum values. In this

case, 100% maximum values need to be provided with formula for obtaining inter-

mediate values. Data shall be provided for the three axes of greatest displacement;

an example of possible presentation is shown in Figure 1.6.

Figure 1.6: Example chart for TS, illustrating the speed (X axis, [mm/s]) and pay-

load (a, in %) on the stopping time (Y axis, [s]).

About the C value, according to ISO 13855, it is calculated by limiting the

direction of approach, relying on the placement of sensors, or requiring a speci�c

control device. These consideration given for C from ISO 13855 are not applicable

both for the SSM equation as de�ned in ISO/TS 15066 (see Equation 1.4) and

for the proposed approach of this work. Speci�cally, because of the dynamic and

recon�gurable nature of industrial robots, the direction of approach is ambiguous.

Therefore, the C value computation has been carried out in another way, as described

in Chapter 7.

This work decomposes and assesses the performance of ISO/TS 15066 SSM min-

imum protective distance metric and adds a contribution to improve some aspects to

allow the applicability in industrial scenarios. In the following Chapters, four main

18



CHAPTER 1. INTRODUCTION

areas that are directly pertinent to SSM are widely discussed: human detection and

tracking, prediction of human and robot motions, safety separation maintenance

and robot speed monitoring.

19



Chapter 2

Hardware and Software

In this chapter, hardwares and softwares used in this work are described. The

experimental set-up is composed by two depth cameras, which have been used to

monitor the collaborative workspace: a Microsoft Kinect v1 and an Intel RealSense

D435 (see Figure 3.1(a)). At least two views become necessary to minimize the

occlusions of the observed area, as shown in Figure 3.1(b) and Figure 3.1(c). All

the code has been developed in Robot Operating System (ROS) environment. The

operating system used is Ubuntu 16.04.

2.1 Microsoft Kinect v1

The Microsoft Kinect v1 [20] is a sensor developed by Microsoft for the Xbox 360

console and computer; its function is to achieve high performance 3D image capture,

facial recognition and voice recognition, and this is made possible by the software

embedded on Kinect, created by Microsoft. The Kinect sensor is USB-powered and

is capable of simultaneously tracking up to six people; it is made of:

• a motorized pivot

• a RGB color camera

• a depth sensor

• a microphone

• a set of advanced software to capture motion and gestures

The speci�cations of the Microsoft Kinect v1 are shown in Table 2.1.

20



CHAPTER 2. HARDWARE AND SOFTWARE

(a) External design (b) Internal structure

Figure 2.1: Microsoft Kinect v1

Feature Microsoft Kinect v1

Color camera 640× 480 at 30 fps

Depth camera 320× 240

Max depth distance ∼ 4.5 m

Min depth distance 0.4 m in near mode

Horizontal FoV (Field of View) 57 degrees

Vertical FoV 43 degrees

Skeleton joints de�ned 20 joints

Full skeletons tracked 2

Table 2.1: Microsoft Kinect v1 speci�cations

2.2 Intel RealSense D435

The Intel RealSense D435 [21] is an USB-powered depth camera that includes in-

frared projector and a RGB sensor. It supports the Intel RealSense SDK (Software

Development Kit) 2.0, an open source, cross platform development suite including

libraries, wrappers, sample code, and tools. The Intel RealSense D435 uses stereo

vision to calculate depth; the stereo vision implementation consists of a left imager,

right imager, and an optional infrared projector. The infrared projector projects

non-visible static IR pattern to improve depth accuracy in scenes with low texture.

21



CHAPTER 2. HARDWARE AND SOFTWARE

The left and right imagers capture the scene and sends raw image data to the vision

processor, which calculates depth values for each pixel in the image by correlating

points on the left image to the right image, and via shift between a point on the

left image and the right image. The depth pixel values are processed to generate a

depth frame. Subsequent depth frames create a depth video stream.

The speci�cations of the Intel RealSense D435 are shown in Table 2.2.

(a) External design (b) Internal structure

Figure 2.2: Intel RealSense D435

Feature Intel RealSense D435

Depth FoV 85.2◦ × 58◦ × 94◦ (+/− 3◦)

Depth stream output resolution Up to 1280× 720

Depth stream output frame rate Up to 90 fps

Minimum depth distance 0.2 m

Sensor shutter type Global shutter

Max range ∼ 10 m

RGB sensor resolution and Frame rate 1920× 1080 at 30 fps

RGB sensor FoV 69.4◦ × 42.5◦ × 77◦ (+/− 3◦)

Camera dimension 90 mm × 25 mm × 25 mm

Table 2.2: Intel RealSense D435 speci�cations

22



CHAPTER 2. HARDWARE AND SOFTWARE

2.3 ROS

ROS (Robot Operating System) [22] is a set of open source software libraries and

tools which makes it possible to create applications for robots. ROS allows to control

a series of robotic components from a PC. It is issued under the Berkeley Software

Distribution (BSD) license, a license that imposes minimal restrictions on the use

and redistribution of the software.

Figure 2.3: ROS logo.

ROS is based on the following core concepts:

• Nodes : single-purposed executable programs (e.g., sensor driver(s), actuator

driver(s), mapper, planner, UI, etc.). Thery are individually compiled, exe-

cuted and managed, and written using a ROS client library. Nodes can publish

or subscribe to a topic and can also provide or use a service.

• Topics andMessages : topics are names for a stream of messages with a de�ned

type. Nodes communicate with each other by publishing messages to topics.

Publishing and subscribing allow a 1-to-N broadcasting. Messages are strictly-

typed data structures for inter-node communication.

• Services : synchronous inter-node transactions. The service and client model

complies with 1-to-1 request-response. Services carry out remote computation

and trigger functionality and behavior.

• ROS master : provides connection information to nodes so that they can trans-

mit messages to each other. Every node connects to a master at startup to

register details of the message streams they publish, and the streams to which

that they to subscribe. When a new node appears, the master provides it with

the information that it needs to form a direct peer-to-peer connection with

other nodes publishing and subscribing to the same message topics.

23



CHAPTER 2. HARDWARE AND SOFTWARE

• Parameters : have a hierarchy that matches the namespaces used for topics

and nodes. This hierarchy is meant to protect parameter names from colliding.

The hierarchical scheme also allows parameters to be accessed individually or

as a tree.

• Stacks and Packages : stacks contain one or more packages, the latter contain

nodes and provide a ROS interface.

The ROS version used in this work is the Kinetic.

2.3.1 RViz

RViz (ROS Visualization) [23] is a 3D visualization tool for ROS. Other than the

3D view, RViz o�ers a displays list which shows all the loaded displays (e.g., point

cloud, robot state).

Figure 2.4: RViz logo.

There is a list containing the type of visualization. The type indicates the kinds

of data displayed by a given display.

2.4 MATLAB

MATLAB is a scienti�c computing environment that can be used on multiple levels,

from the pocket calculator to the simulation and analysis of complex systems, and

is developed by MathWorks [24].

24



CHAPTER 2. HARDWARE AND SOFTWARE

Figure 2.5: MATLAB logo.

MATLAB is supported by operating systems such as Windows, Mac OS, GNU/

Linux and Unix, and is optimized to solve scienti�c and design problems. Engineers

and scientists from all over the world use this software to analyze and design the

systems and products that transform our world: MATLAB is in fact active safety

systems in automobiles, in interplanetary spacecraft, in health monitoring devices,

in smart power grids and in LTE cellular networks. MATLAB is used for machine

learning, signal processing, image processing, machine vision, communications, com-

putational �nance, control design, robotics and much more. The name MATLAB is

an abbreviation of Matrix Laboratory : in fact, its programming language is based

on the matrix (a scalar is a 1x1 matrix), which represents the most natural way

in the world to express computational mathematics. The integrated graphics, com-

bined with a large library of toolboxes, simpli�es visualization and o�ers an detailed

understanding of the data.

2.4.1 Simulink

Simulink [25] is an environment for modeling, analyzing, and simulating dynamic

systems, developed by the American company MathWorks. Simulink supports the

simulation of linear, and/or non-linear systems, which operate with continuous

and/or discrete signals of a continuous and/or discrete time type. Simulink pro-

vides a graphical interface that allows to de�ne and build the model through its

block diagram. This environment includes a large number of libraries that contain

many prede�ned blocks that can perform di�erent signal operations. Simulink is

closely integrated with MATLAB. All blocks and parameters used in this works are

25



CHAPTER 2. HARDWARE AND SOFTWARE

described in Section 5.

2.5 MoveIt!

MoveIt! is a software designed to have collision detection ability as one of its fea-

tures and it can be de�nes as a collection of software packages and tools integrated

with ROS to provide multiple capabilities such as motion planning, 3D perception,

collision detection, kinematics solving, manipulation and control.

Figure 2.6: MoveIt! logo.

MoveIt! has a plugin based architecture, which allows the user to add their own

capabilities without altering the architecture of move_group, MoveIt!'s central node.

Figure 2.7 shows the MoveIt! architecture.

26



CHAPTER 2. HARDWARE AND SOFTWARE

Figure 2.7: MoveIt! System Architecture.

The move_group node integrates the capabilities of the MoveIt! and make them

available for the users through ROS actions and services. Note that this node does

not execute any motion planner algorithms, instead it enables the plugin based

architecture for all functionalities to integrate with it. So, its rule is simply to link

every single system features through plugins. In this work, the trajectory has been

programmed with MoveIt!, while the planner used for the trajectory computation

is STOMP (Stochastic Trajectory Optimization for Motion Planning) [26]. It is an

optimization-based motion planner that consists in generating a number of noisy

trajectories that can allow to explore space around an initial given trajectory. Each

of them has its own cost and this parameter will be examined to select, amongst

all, who is the candidate to be the best solution, that means the trajectory with the

lowest cost value. At each iteration, the algorithm optimizes a cost function based

on a combination of several factors. No gradient information is required for this

very good algorithm.

27



CHAPTER 2. HARDWARE AND SOFTWARE

2.6 Point Cloud Library

A point cloud is a set of points characterized by their position in a coordinate

system and by any intensity values (color, depth, etc.) associated with them. It is

the most used 3D representation because of its simple extraction from cameras. A

point cloud is essentially an unordered collection of vertices; the fact that there is no

order among the vertices means that it is very di�cult to perform search algorithms

around the points neighbors, unless there is �rst built a hierarchical representation

of the points (such as the KD-tree). More, the fact that there is no topology of the

points, that is the set of connections between them, means that it is complicated to

discriminate the external surfaces of an object from the internal ones.

Determining the surface direction is the typical surface rendering problem, based

on the notion of mesh. Meshes can be de�ned as point clouds which have a topol-

ogy and tipically they are analized to estimate shadows or normal vector. On the

other hand, the introduction of a particular order between the points of a point

cloud originates the so-called voxelized cloud, where the notion of voxel �ows in

the pixel's 3D interpretation. On the other hand, the introduction of a particular

order between the points of a point cloud originates the so-called voxelized cloud,

where the notion of voxel �ows in the pixel's 3D interpretation. In fact, a voxelized

cloud is a 3D grid of light intensity values and this approach represents the most

appropriate representation of data to obtain e�cient 3D analysis algorithms, since

the coordinates of a particular point are implicitly de�ned by the index representing

the point position within the 3D grid. The presence of this index means that this

is an orderly representation of points without topology (but easily accessible from

the grid), which is easy to perform search algorithms and is great for viewing 3D

scenes (the detail level depends on grid resolution). The only disadvantage lies in

the fact that, depending on the device used, it takes a further step to get the vox-

elized cloud from other representations. Some particular types of sensors, such as

metal detectors, directly obtain the voxelized cloud.

If it is possible to project a voxelized cloud on a 2D grid, it is generated the range

image which is also an orderly representation of a 3D scene and this representation is

28



CHAPTER 2. HARDWARE AND SOFTWARE

particularly useful for analyzing, segmenting and describing them. Figure 2.8 shows

these transformations.

Figure 2.8: Transformations between 3D representations.

Point Cloud Library (PCL) [27] is an open source library, licensed under BSD

terms which contains powerful processing tools and algorithms to implement 3D data

perception applications. PCL provides algorithms for �ltering, feature estimation,

surface reconstruction, registration, model �tting and segmentation.

Figure 2.9: Point Cloud Library logo.

The PCL structure splits the provided algorithms into smaller code libraries that

can be compiled separately. This modularity is important for distributing PCL on

platforms with reduced computational or size constraints. PCL presents several

modules [28] and many of them have been adopted for the proposed application:

29



CHAPTER 2. HARDWARE AND SOFTWARE

• Common: contains the common data structures and methods used by the

majority of PCL libraries. The core data structures include the Point Cloud

class and a multitude of point types that are used to represent points, surface

normals, and RGB color values and feature descriptors;

• Filters: contains outlier and noise removal mechanisms for 3D point cloud data

�ltering applications. It also contains generic �lters used to extract subsets

of point cloud, or to exclude parts of it. It provides a VoxelGrid class to

down-sample a point cloud by intersecting it with a lattice of points;

• I/O: contains classes and functions for reading and writing point cloud data

(PCD and PLY) �les, as well as capturing point clouds from a variety of

(OpenNI compatible) sensing devices;

• Kd-tree: provides the kd-tree data-structure, using FLANN implementation

that allows for fast nearest neighbour searches. A Kd-tree (k-dimensional tree,

in most cases in this work it is a 3d-tree) is a space partitioning data struc-

ture that stores a set of k-dimensional points in a tree structure that enables

e�cient range searches and nearest neighbour searches. Nearest neighbour

searches are a core operation when working with point cloud data and can be

used to �nd correspondences between groups of points or feature descriptors

or to de�ne the local neighbourhood around a point or points;

• Search: provides methods for searching for nearest neighbours using di�erent

data structures, including kd-trees, octrees, brute force and specialized search

for organized datasets;

• Segmentation: contains algorithms for segmenting a point cloud into distinct

clusters. These algorithms are best suited to processing a point cloud that is

composed of a number of spatially isolated regions. In such cases, clustering is

often used to break the cloud down into its constituent parts, which can then

be processed independently. It also contains algorithms to �nd di�erences

between two point cloud, that can be used for example for quality inspection

purposes.

• Visualization: this library was built for the purpose of being able to quickly

prototype and visualizes the results of algorithms operating on 3D point cloud

30



CHAPTER 2. HARDWARE AND SOFTWARE

data.

In this work, PCL represents the core of the developed pipeline, from the Back-

ground subtraction till the separation distance computation, detailed in Section 3.3.

31



Chapter 3

Human-Robot Interaction

The robot control system must be able to adapt the robot trajectory to the cur-

rent observed scene and to perform its task e�ciently and safely. This means that

control system must be able to detect the presence of human operators inside the

collaborative workspace, to track the human which is closest to the machine and,

�nally, to modulate the robot speed according to the minimum protective distance

S.

The HRC has been addressed dividing it into two distinct problems: human

detection and tracking (HDT) and intention estimation (IE).

3.1 Perception System

As mentioned in Chapter 2, two depth cameras have been used in this work to

monitor the collaborative workspace. An intrinsic calibration, whose procedure is

described in the Section 3.2.1, is necessary to update the rough intrinsic default

parameters, as well as, a sphere-tracking procedure has been developed for extrinsic

calibration (see Section 3.2.2). The obtained matrices, T robotcamera1 and T
robot
camera2, express

the poses of the camera frames with respect to the robot base frame.

32



CHAPTER 3. HUMAN-ROBOT INTERACTION

(a) Perception system.

(b) Kinect RGB view. (c) RealSense RGB view.

Figure 3.1: Experimental set-up.

3.2 Camera Calibration

Camera calibration is an essential task for extracting metric information from 2D

images. A camera is calibrated using a model de�ned by two families of parameters:

intrinsic parameters, which describe the camera regardless of its position in space,

and extrinsic parameters, which describe the position of the camera in space inde-

pendently of its internal features. This model must be appropriately corrected to

re�ect the optical distortions introduced by the camera lenses.

33



CHAPTER 3. HUMAN-ROBOT INTERACTION

3.2.1 Intrinsic camera parameters

Microsoft Kinect v1

The instrinsic calibration of Microsoft Kinect v1 was carried out using the tool in

camera_calibration ROS package [29], which allows to automatically estimate the

parameters of a camera by using patterns such as chess boards or grids, as shown

in Figure 3.2. This tool allows to extract the intrinsic parameters of the Kinect in

K matrix form and save them in a .yaml �le, which is recalled when the camera

drivers are launched. The K matrix structure is the following

K =


fx 0 cx

0 fy cy

0 0 1

 (3.1)

To make the tool works correctly, the number of rows and columns of the pattern

in question, i.e., a chess, the shape of the pattern and the dimensions has been set.

Figure 3.2: Example of intrinsic parameters estimation with a chesss.

Following are the results obtained for the Microsoft Kinect v1

34



CHAPTER 3. HUMAN-ROBOT INTERACTION

Kdepth =


587.0563067729362 0 320.6153422514201

0 590.2429336923416 250.4053454922714

0 0 1

 ; (3.2)

Krgb =


505.3915336030262 0 324.8264408337666

0 506.3435945502578 262.4795332991785

0 0 1

 . (3.3)

Intel RealSense D435

Regarding the Intel RealSense D435, the camera_calibration tool could not be

used because this camera does not support .yaml but .json �les. However, Intel

provides a real-time executable viewer, as shown in Figure 3.3, to be able to calibrate

all calibration parameters (about a hundred) based on a target.

Figure 3.3: Example of real-time executable viewer.

In this case, the target was to have the edges of the frame objects as clean as

possible (see Figure 3.4(b)) to avoid measurement errors of the default con�guration

of the Intel itself (see Figure 3.4(a)). For this purpose, some �lters have been applied;

the main ones are described below:

35



CHAPTER 3. HUMAN-ROBOT INTERACTION

• Sub-sampling : since the applications may have their speed and performance

negatively impacted by having to process many input data having many depth

points (i.e., 1280 × 720 resolution), the sub-sampling of the input has been

made right after it has been received (i.e., 848× 480 resolution);

• Edge-preserving �ltering : this type of �lter smooth the depth noise while

attempting to preserve edges;

• Spatial �ltering : it is an image processing technique for changing the intensi-

ties of a pixel according to the intensities of the neighboring pixels;

• Temporal �ltering : it is recommend to use some amount of time averaging to

improve the depth, making sure not to let "holes" (depth= 0) in�uence the

computations. Here, there is an alpha parameter which represent the extent

of the temporal history that have to be averaged, and a threshold parameter,

delta. They allow to reduce temporal smoothing near edges to not include

holes in the averaging.

36



CHAPTER 3. HUMAN-ROBOT INTERACTION

(a) Intrinsic parameters by default.

(b) Intrinsic parameters calibrated.

Figure 3.4: Intel RealSense D435 intrinsic parameters.

Once the desired depth has been obtained, it is possible to download the .json

calibration �le and refer to it in the launch �le of the camera drivers.

3.2.2 Extrinsic camera parameters

At the state-of-the-art (SoA), there are di�erent approaches for identifying the ex-

trinsic calibration matrix of a depth camera, Twc . The goal is to obtain an accurate

identi�cation of the camera pose, which guarantees the minimum relative position-

ing error when the two camera views are merged. The adopted solution implements

37



CHAPTER 3. HUMAN-ROBOT INTERACTION

a sphere tracking approach to obtain the transformation matrix between the robot

base frame and the depth camera frame, T bc . Many in detail, a red sphere of 0.12 m

diameter has been mounted at the robot end e�ector, as shown in Figure 3.5.

While the center coordinates of the sphere expressed in robot base frame, P b
i ,

have been easily obtained through the robot forward kinematic, the corresponding

points expressed in depth camera frame, P d
i , have been estimated through a point

cloud-based tracking approach. This procedure is described in the Section 3.2.2. At

the end, the resulting corresponding couples of points have been analyzed and an

optimization of a cost function provides the desired transformation matrix.

P d
i computation

The procedure described below was adopted for both depth cameras. The imple-

mentation, realized in MATLAB [24], consists of:

1. positioning of the robot in a con�guration that allows to correctly distinguish

the sphere from the background;

2. acquisition of point cloud;

3. identi�cation of a ROI (Region Of Interest) to restrict the search area to an

area in which the sphere is present;

4. execution of the M-estimator SAmple Consensus (MSAC ) algorithm for the

estimation of the parameters of the mathematical model of the sphere;

5. evaluation of the model obtained according to a radius constraint;

6. repetition of steps 2. to 5. for the acquisition of K models that meet the

constraint;

7. computation of the mean of K valid results.

This procedure has been iterated to acquire N points that describe the coordi-

nates of the center of the sphere positioned in several points of the robot workspace.

The robot, due to the hardware limitations about the noise of the depth cameras

and the considerable distance of the sphere with respect to the sensor frame, has

been moved manually because only a limited portion of the space allowed the depth

camera a satisfactory recognition of the sphere. The pseudo-code of the procedure

is reported in Algorithm 1. Then, a more detailed explanation of the seven points

38



CHAPTER 3. HUMAN-ROBOT INTERACTION

described above.

Algorithm 1 P d
i computation

1: input:

2: rn ← Nominal sphere radius

3: re ← Estimated sphere radius

4: ∆r ← Acceptable radius displacement

5: ROI ← Region Of Interest

6: K ← Minimum number of constrained samples to be acquired

7: C ← Number of acquired, constrained samples

8: PCo ← Original point cloud

9: PCs ← Segmented point cloud

10: accm ← Accumulator matrix of estimated sphere models

11: P d
i ← i -th target point expressed in depth frame

12: procedure Sphere center estimation

13: C = 1

14: while C < K do

15: PCo = pcrec

16: PCs = pcseg(ROI, PCo)

17: [p, re] = pcfitspehere(PCs);

18: if |re − rd| <= ∆r then

19: accm[C, 1 : 3] = p

20: accm[C, 4] = re

21: C = C + 1

22: end if

23: end while

24: P d
i = mean(accm[:, 1 : 3])

25: end procedure

First of all, after having connected to the ROS network, it is necessary to acquire

the point cloud of the used camera (see Figure 3.5(a)). The MATLAB function that

allows to return a geometric model that describes the sphere is pc�tsphere. This

function, which returns the center of the sphere and the radius, uses the MSAC

algorithm [30], a variant of the Random Sample Consensus (RANSAC ) algorithm

[31], to �nd the sphere (see Figure 3.5(b)). In order to use the pc�tsphere function,

it is necessary to provide it the ROI as an input parameter; for this reason, the

39



CHAPTER 3. HUMAN-ROBOT INTERACTION

function �ndPointsInROI has been used. Then, a constraint has been imposed by

exploiting the knowledge of the radius of the sphere: of all the outputs returned by

pc�tsphere function, only those with a radius in the range of 0.058 m to 0.062 m

have been considered.

(a) Point cloud acquisition. (b) Search for the sphere .

Figure 3.5: Experimental set-up.

Once the coordinates of the center of the sphere subject to the constraint have

been obtained, a mean of them has been made to obtain a single frame that has

a radius that is more faithful to the true radius of the sphere. For each frame

calculated, the corresponding con�guration of the robot in joints space has been

recorded. Collected a su�cient number of points (i.e., N = 8 in the present case)

and knowing the robot kinematics, the transformation matrix of the camera frame

expressed in basis frame of the robot T bc has been calculated by means of an algorithm

for optimizing a cost function that weighs the collected points proportionally to the

distance of the points from the camera. Then, calculated the transformation matrix

of the camera frame from the world frame Twc , and obtained the quaternion from the

rotation matrix R of Twc , position and orientation of the camera frame expressed in

world frame were obtained. The transformation matrix of the Microsoft Kinect v1

frame from the world frame Twk and the transformation matrix of the Intel RealSense

D435 frame from the world frame Twi are shown below:

40



CHAPTER 3. HUMAN-ROBOT INTERACTION

Twk =


0.8495 −0.1645 0.5013 −0.7516

−0.5267 −0.3191 0.7879 −1.8008

0.0304 −0.9333 −0.3577 2.1462

0 0 0 1.0000

 (3.4)

Twi =


−0.2539 −0.4330 0.8649 −0.8735

−0.9672 0.1089 −0.2295 0.7020

0.0052 −0.8948 −0.4465 1.9651

0 0 0 1.0000

 (3.5)

3.3 Human Detection and Tracking

Realizing a safe HRC application requires a very fast HDT algorithm, which detects

human operators in real time. In this work, a novel point cloud-based methodology is

presented to compute the minimum distance between the whole body of the detected

operators and a robot. Since this operation is computationally heavy, a Background

Segmentation (BS) algorithm is developed to subtract the static environment from

the whole observed scene and to process exclusively the information related to the

dynamic objects. The developed pipeline is shown in Figure 3.6, while the pseudo-

code of the whole procedure is reported in Algorithm 2.

41



CHAPTER 3. HUMAN-ROBOT INTERACTION

Figure 3.6: Implemented HDT pipeline.

The perception system described in Section 3.1 observes the surroundings of the

manipulator and the robot kinematic chain is fully visible. While the workspace is

monitored, the robot executes its task, thus it becomes a dynamic entity. Therefore,

the Realtime URDF Filter [32] is used at the beginning of the pipeline to remove

the robot from the scene.

42



CHAPTER 3. HUMAN-ROBOT INTERACTION

Algorithm 2 ds computation and closest cluster identi�cation

1: input:

2: Ssource1 ← Original depth image frame from camera 1

3: Ssource2 ← Original depth image frame from camera 2

4: S0
source1 ← Frame to be subtracted from the current depth image 1

5: S0
source2 ← Frame to be subtracted from the current depth image 2

6: PCD1 ← Point cloud data corresponding to depth image 1

7: PCD2 ← Point cloud data corresponding to depth image 2

8: PCD1,2 ← Merged point cloud data

9: Rm ← URDF robot model

10: clusters← PCD clusters extracted from the current scene

11: acc← Accumulator matrix of clusters separation distances

12: ds ← Robot-closest operator separation distance

13: cluster ← Closest operator cluster

14: procedure Segmentation pipeline

15: bool first_frame = true

16: Ssource1 = depthAcquisition(camera1)

17: Ssource2 = depthAcquisition(camera2)

18: Ssource1 = Ssource1 −Rm

19: Ssource2 = Ssource2 −Rm

20: if first_frame == true then

21: S0
source1 = Ssource1

22: S0
source2 = Ssource2

23: first_frame = false

24: end if

25: Ssource1 = Ssource1 − S0
source1

26: Ssource2 = Ssource2 − S0
source2

27: PCD1 = pcdConversion(Ssource1)

28: PCD2 = pcdConversion(Ssource2)

29: PCD1,2 = PCD1 + PCD2

30: clusters = EuclideanClusterExtraction(PCD1,2)

31: for i = 1 to clusters.size do

32: acci = computeMinDist(Rm, clustersi)

33: end for

34: (ds, cluster) = min(acc)

35: end procedure

43



CHAPTER 3. HUMAN-ROBOT INTERACTION

The implementation of the BS step consists of an e�cient algorithm that per-

forms the subtraction of a stored background, at pixel level: 50 frames of a static

scene in the absence of human workers are initially captured and the minimum value

of each pixel is stored in a memory area. Therefore, the stored frame is subtracted

from the current frame at every acquisition.

The algorithm makes use of the Point Cloud Library (PCL) [27]: the depth

information is converted into Point Cloud Data (PCD) and a uniform sampling

�lter can be applied to make the algorithm more reactive, by decreasing the PCDs

density.

Subsequently, a reference camera has been selected to express the entire output

of the perception system relative to a single camera frame. In the case of study, the

the Kinect sensor has been selected. The point clouds have been combined through

the merging step (MS), which allows to obtain a single point cloud starting from

the inital ones. The accuracy reached during the extrinsic calibration procedure,

described in Section 3.2.2, allowed to obtain a satisfying correspondence. To obtain

a single point cloud, the following two operations are required:

1. computation of the transformation matrix between the frame in which the

point cloud is expressed and the reference frame passed as an input parameter;

2. transformation of both point clouds in the reference frame and sum of them

in a single �nal point cloud.

Finally, the clustering process (CP) provides as many clusters as single dynamic

areas are detected in the foreground. The Euclidean cluster extraction method is

performed to highlight all the human clusters of the collaborative workspace. The

bottom right image of Figure 3.6 shows three detected human operators, whose

shapes are distinguishable by di�erent colors. To compensate the sensors measure-

ment noise that could sometimes provide false clusters, the areas in the foreground

should be large enough to represent a human body. As a consequence, a minimum

PCD cardinality threshold has been experimentally determined to discriminate the

validity of the cluster.

44



CHAPTER 3. HUMAN-ROBOT INTERACTION

3.4 Human-Robot Separation Distance

The goal of the proposed HRC strategy is to identify the nearest pair of points, one

belong to the robot (PR) and the other one belonging to the operator (PH), that

minimize the distance, i.e.,

PH ∈ H, PR ∈ R | d(PH , PR) ≤ d(P ′H , P
′
R)

∀P ′H ∈ H, P ′R ∈ R
(3.6)

where d(·, ·) is the Euclidean distance between two points, H and R represent

the set of all points that belong to the operator and to the robot, respectively.

Therefore, alongside the HDT strategy, a robot modeling method has been also

implemented: unlike the SoA assumptions that consider only a singular representa-

tive coordinate of the robot (e.g., the end e�ector), introducing an ine�cient estima-

tion of the distance between the operators and the robot kinematic chain, or, on the

other hand, report the pose of the robot only in terms of either joint con�gurations

or in terms of the Cartesian pose of the robot kinematic frames, without taking into

account the link volumes but considering only speci�c points, the proposed solution

models the entire robot kinematic chain and its volume. A computationally e�-

cient way to represent the whole robot is to use primitive shapes, e.g., ellipses and

spheres [33]. A similar convention was proposed in [34]. This work is inspired by

the same idea, but pays attention to some aspects: since the robot links can have

a variable length, its kinematic chain has been padded through dummy frames to

protect the robot homogeneously, and a 0.10 m diameter security sphere has been

created around each frame, taking into account the last frame that can incorporate

a tool and/or an attached object (e.g., during a pick and place task).

Under such assumptions, the pair of human-robot points that are closest to each

other can be immediately identi�ed. This step strongly justi�es the choice of a point

cloud-based pipeline. In fact, the point cloud provides much more detailed informa-

tion, accuracy and precision if compared to the major HDT techniques present in

the SoA literature cited in Chapter 1. Unlike common skeleton-based techniques,

45



CHAPTER 3. HUMAN-ROBOT INTERACTION

the proposed approach allows tracking humans also when they are carrying objects.

Moreover, it is not necessary that human operators are in front of the camera view:

the point cloud will recognize them anyway. Furthermore, detecting the pair of

human-robot points at a minimum distance (Equation 3.6) is particularly immedi-

ate. The algorithm calculates the distance between all points of a clusters point

cloud and the origin of every robot frame. Eventually, the robot point PR will be

the one on the surface of the virtual sphere, around the identi�ed frame, which lies

on the line connecting the origin of this frame and the closest point in the cluster.

From these results, the closest human cluster is indirectly selected if more than one

human have been detected.

Figure 3.7 shows the results. Note that the proposed approach is able to identify

more detailed body parts, e.g., a elbow, the head, an hand, the chin or the chest,

and also that PR can be detected along the whole robot kinematic chain. Figure 3.8

demonstrates the e�ectiveness of the proposed approach in multi-humans scenarios.

The results of the experimental tests described in Chapter 7 will be used to evaluate

the performances ofthe algorithm.

Figure 3.7: Identi�cation of the minimum distance points.

46



CHAPTER 3. HUMAN-ROBOT INTERACTION

Figure 3.8: Multi-humans tracking.

3.5 Estimation of operator and Robot velocities

In addition to the HDT strategy, another fundamental function of the HRC problem

is represented by IE, i.e., the prediction of human movement. From such information,

the robot control system will select the most appropriate value of its joint speeds to

avoid a potentially dangerous situation, as explained in explained in Chapter 6 and

according to ISOs presented in Section 1.5.

IE consists in estimating the next position and velocity of the trajectory per-

formed by the operator on the basis of a series of positions previously acquired.

The sensor fusion strategy that has been integrated into this work is based on a

Linear Kalman Filter (LKF) [35], which tries to solve the problem of estimating the

state of a discrete-time process governed by the equations

47



CHAPTER 3. HUMAN-ROBOT INTERACTION

xk+1 =

 I3 ∆tI3

O3 I3

xk + wk (3.7)

yk =
[
I3 O3

]
xk + nk, (3.8)

where ∆t is the sampling time, I3 and O3 are the identity and zero matrices

of size 3× 3, respectively; w and n are the process and measurement noises with

covariance matrices W and N , respectively. Finally, x is the state vector of the

system, i.e., the position and the velocity of the operator x =
[
pTH ṗTH

]T
, and the

measured output y is a vector containing the coordinates of the point PH described

in Section 3.4. The covariance matrix N is experimentally estimated, while the

covariance matrix Q has been chosen as

Q =

I3∆t2 O3

O3 Q2

 (3.9)

whereQ2 quanti�es the uncertainty on the velocity dynamics (assumed constant)

of the state equations.

Based on the vector nature of the velocity, it is possible to make some consid-

erations about the direction (trend) of the operator, that is to say, to predict in

which direction he/she is traveling to. Chapter 4 describes how to take advantage

from these considerations for industrial collaborative applications with the aim to

maximize productivity.

The LKF equations implemented in this work are the standard ones and are

shown in Table 3.1.

48



CHAPTER 3. HUMAN-ROBOT INTERACTION

Predict

Predicted (a priori) state estimate x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk

Predicted (a priori) error covariance Pk|k−1 = FkPk−1|k−1F
T

k + Qk

Update

Innovation or measurement pre-�t

residual

ỹk = zk −Hkx̂k|k−1

Innovation (or pre-�t residual) Sk = Rk + HkPk|k−1H
T

k

covariance

Optimal Kalman gain Kk = Pk|k−1H
T

kS
−1
k

Updated (a posteriori) state estimate x̂k|k = x̂k|k−1+Kkỹkx̂k|k = x̂k|k−1+Kkỹk

Updated (a posteriori) estimate Pk|k = (I−KkHk)Pk|k−1 (I−KkHk)
T

covariance +KkRkK
T

k

Measurement post-�t residual ỹk|k = zk −Hkx̂k|k

Table 3.1: Linear Kalman Filter equations.

where

• x̂k is the a posteriori state estimate at time k given observations up to and

including at time k;

• P̂k is the a posteriori error covariance matrix;

• Fk is the state-transition model which is applied to the previous state xk−1;

• Hk is the observation model which maps the true state space into the observed

space;

• Qk is the covariance of the process noise;

• Rk is the covariance of the observation noise;

• Bk is the control-input model which is applied to the control vector uk;

The tuned parameters are fully described in Chapter 7.

Figure 3.9 shows sample movements of the operator and the three components

of his/her estimated speed.

The linear velocity ṗR of the point on the robot closest to the operator can be

49



CHAPTER 3. HUMAN-ROBOT INTERACTION

Figure 3.9: Estimation of operator velocity.

computed according to the di�erential kinematics equation

ṗR = Jp(q)q̇ (3.10)

where q [rad] and q̇ [rad/s] are the robot joint position and velocity vectors,

respectively; Jp, on the other hand, is the position part of the Jacobian matrix

calculated till the closest point.

The ISO/TS 15066 states that the "directed speeds" of the robot and the human

should be used to compute S. This means that, in Equation 1.4, vh is the operator

speed in the direction of the moving part of the robot and vR is the robot speed

in the direction of the selected operator. Note also that these speeds are vector

magnitudes, hence they are always grater or equal to 0. Therefore, the velocity

terms of Equation 1.4 can be computed as

vH =

∣∣∣∣ˆ̇pTH ( pR − p̂H
‖pR − p̂H‖

)∣∣∣∣ (3.11)

vR =

∣∣∣∣ṗTR( p̂H − pR
‖p̂H − pR‖

)∣∣∣∣ , (3.12)

where p̂H and ˆ̇pH are the operator position and velocity estimated by the LKF,

respectively, and pR is a vector containing the coordinates of the point PR de�ned

in Section 3.4.

50



Chapter 4

Fuzzy Logic

The protective separation distance S (Equation 1.4), computed by using the ve-

locities of Equations 3.11 and 3.12, does not take into account the relative travel

direction of the robot and the operator. This means that, if the robot and the

operator are going away from each other, the value of S unnecessary increases (pro-

portionally to the computed speed). To improve the production time considering

also this situation, the protective separation distance has been rede�ned as follows

S = α[(vHTR + vHTS) + (vRTR)] + (B) + (C + ZS + ZR) (4.1)

where α is a coe�cient in the interval [0, 1] that is 1 when the operator and the

robot are actually approaching to each other and is smaller than 1 otherwise. To

chose the value of α, a fuzzy inference approach has been implemented.

4.1 What is Fuzzy logic

The fuzzy logic, also called faded logic, is a methodology in which each proposition

represents a degree of truth into the interval [0, 1] [36]. It starts out as an alternative

to traditional, or binary or crisp logic, to reason with truth values that are not only

1 (true) and 0 (false). Examples like that in Figure 4.1 help to understand the

concept of fuzzy logic.

51



CHAPTER 4. FUZZY LOGIC

Figure 4.1: Di�erence beetween fuzzy and traditional logic.

In the traditional logic there are net thresholds beyond which one belongs to

a category rather than another; however, in the fuzzy logic, the schemes intersect

each other, so a given subject may belong in variable percentages to either one or

the other group. For example, trms such as "tall" and "young" are fuzzy because

they cannot be crisply de�ned. To classify a person as tall or young, it is impossible

to decide if the person is in a set or not. By giving a degree of pertinence to

the subset, no information is lost when the classi�cation is made. This reasoning

therefore allows a more gradual passage from one category to another according to

the presence or absence of some characteristics. This has led to attach a certain

importance to the fuzzy logic, up to its applications in software (knowledge-based

systems) with the aim of replacing as much as possible the human decision-makers,

and in the hardware (systems control) to replace the human operator. Table 4.1

shows some pros and cons of the fuzzy logic.

52



CHAPTER 4. FUZZY LOGIC

Pros Cons

Conceptually easy to understand Manual tuning of membership

functions and other parameters which

might be tedious and time-consuming

Flexibility Not well adaptable to big and

complicated problems

Tolerance inaccurate data Crisp models can be more e�cient

and even convenient

Modelling of non-linear functions

complexity of arbitrary complexity

No systematic approach to fuzzy

system designing

Table 4.1: Pros and cons of fuzzy logic.

4.2 Fuzzy Sets

Fuzzy Sets are sets in which many degrees of membership are allowed, and indicated

with a number between 0 and 1. The point of departure for fuzzy sets is simply

the generalization of the valuation set from the pair of numbers {0, 1} to all the

numbers in [0, 1]. This is called a membership function and is denoted as µA(x).

Membership functions are mathematical tools for indicating �exible membership

to a set, modeling and quantifying the meaning of symbols. They can represent

a subjective notion of a vague class, such as chairs in a room, size of people, and

performance among others. Commonly there are two ways to denote a fuzzy set. If

X is the universe of discourse, and x is a particular element of X, then a fuzzy set

A de�ned on X may be written as a collection of ordered pairs

53



CHAPTER 4. FUZZY LOGIC

A = {(x, µA(x))} x ∈ X, (4.2)

where each pair (x, µA(x)) is a singleton. In a crisp set singletons are only x, but

in fuzzy sets it is x and µA(x). For example, the set A may be the collection of the

following integers, as in 4.3

A = {(1, 1.0), (3, 0.7), (5, 0.3)}. (4.3)

Thus, the second element of A expresses that 3 belongs to A to a degree of

0.7. The support set of a fuzzy set A is the set of elements that have a membership

function di�erent from zero. Alternative notations for the fuzzy sets are summations

or integrals to indicate the union of the fuzzy set, depending if the universe of

discourse is discrete or continuous.

4.2.1 Types of Sets

Sets can be classi�ed into many types [37]; some of them are listed below:

• Finite set : it contains a de�nite number of elements;

• In�nite set : it contains in�nite number of elements;

• Subset : a set X is a subset of set Y (X ⊆ Y ) if every element of X is an

element of set Y ;

• Proper subset : a set X is a proper subset of set Y (X ⊂ Y ) if every element

of X is an element of set Y and |X| < |Y |.

• Universal set : it is a collection of all elements in a particular context or

application. All the sets in that context or application are essentially subsets

of this universal set;

• Empty set or Null set : it contains no elements. As the number of elements in

an empty set is �nite, empty set is a �nite set. The cardinality of empty set

or null set is zero;

• Singleton set or Unit set : it contains only one element;

• Equal set : if two sets contain the same elements, they are said to be equal;

54



CHAPTER 4. FUZZY LOGIC

• Equivalent set : if the cardinalities of two sets are same, they are called equiv-

alent sets;

4.2.2 Operations on Fuzzy Sets

Operations such as intersection and union are de�ned through the min (∧) and

max (∨) operators respectively, which are analogous to product and sum in algebra.

Formally the min and max of an element are denoted by Equations 4.4 and 4.5.

Figure 5.7 helps to understand how intersection (Figure 4.2(a)) and union (Figure

4.2(b)) work.

µÃ ∧ µB̃ = min(µÃ, µB̃) ≡

µÃ if and only if µÃ ≤ µB̃

µB̃ if and only if µÃ > µB̃

(4.4)

µÃ ∨ µB̃ = max(µÃ, µB̃) ≡

µÃ if and only if µÃ ≥ µB̃

µB̃ if and only if µÃ < µB̃

(4.5)

(a) Intersection of two Fuzzy sets.

(b) Union of two Fuzzy sets.

Figure 4.2: Intersection and Union on Fuzzy Sets.

55



CHAPTER 4. FUZZY LOGIC

Empty fuzzy set It is empty if its membership

function is zero everywhere in

the universe of discourse.

A ≡ ∅

if µA(x) = 0,∀x ∈ X

Normal fuzzy set It is normal if there is at least

one element in the universe of

discourse where its member-

ship function equals one.

µA(xa) = 1

Union of two fuzzy sets The union of two fuzzy sets A

and B over the same universe

of discourse X is a fuzzy set

A∪B inX with a membership

function which is the maxi-

mum of the grades of mem-

bership of every x and A and

B. This operation is related

to the OR operation in fuzzy

logic.

µA∪B(x) ≡ µA(x) ∨

µB(x)

Intersection of fuzzy

sets

It is the minimum of the

grades of every x in X to the

sets A and B. The intersec-

tion of two fuzzy sets is re-

lated to the AND.

µA∩B(x) ≡ µA(x) ∧

µB(x)

Complement of a fuzzy

set

The complement of a fuzzy

set A is denoted as Ā.

µĀ(xa) ≡ 1− µA(xa)

56



CHAPTER 4. FUZZY LOGIC

Product of two fuzzy

sets

A · B denotes the product of

two fuzzy sets with a mem-

bership function that equals

the algebraic product of the

membership function A and

B.

µA·B(xa) ≡ µA(x) ·

µB(x)

Power of a fuzzy set The β power of A (Aβ) has

the equivalence to linguisti-

cally modify the set with

VERY.

µAβ(x) ≡ [µA(x)]β

Concentration Squaring the set is called con-

centration or CON.

µCON(β)(x) ≡ (µA(x))2

Dilation Taking the square root is

called dilation or DIL.

µDIL(A)(x) ≡
√
µA(x)

Table 4.2: The most important fuzzy operations.

57



CHAPTER 4. FUZZY LOGIC

4.3 Membership Function

Membership function represents the degree of truth in fuzzy logic. Membership

functions characterize fuzziness (i.e., all the information in fuzzy set), whether the

elements in fuzzy sets are discrete or continuous, and they are represented by graph-

ical forms, as shown in Figure 4.3. Rules for de�ning fuzziness are fuzzy too.

Figure 4.3: Examples of membership functions.

All membership function types are described in Table 4.3.

58



CHAPTER 4. FUZZY LOGIC

Membership

Function Type

Description

gbellmf Generalized bell-shaped membership function

gaussmf Gaussian membership function

gauss2mf Gaussian combination membership function

trimf Triangular membership function

trapmf Trapezoidal membership function

sigmf Sigmoidal membership function

dsigmf Di�erence between two sigmoidal membership

functions

psigmf Product of two sigmoidal membership functions

zmf Z-shaped membership function

pimf Pi-shaped membership function

smf S-shaped membership function

constant Constant membership function for Sugeno

output membership functions

linear Linear membership function for Sugeno output

membership functions

59



CHAPTER 4. FUZZY LOGIC

String or character vec-

tor

Name of a custom membership function in the

current working folder or on the MATLAB

path. Custom output membership functions are

not supported for Sugeno systems

Function handle Handle to a custom membership function in the

current working folder or on the MATLAB

path. Custom output membership functions are

not supported for Sugeno systems.

Table 4.3: Fuzzy membership functions.

Membership functions have di�erent features, graphically shown in the Figure

4.4:

• Core: for any fuzzy set Ã, the core of a membership function is that region

of universe that is characterize by full membership in the set. Hence, core

consists of all those elements y of the universe of information such that,

µÃ(y) = 1;

• Support : for any fuzzy set Ã, the support of a membership function is the

region of universe that is characterize by a nonzero membership in the set.

Hence core consists of all those elements y of the universe of information such

that,

µÃ(y) > 0;

• Boundary : for any fuzzy set Ã, the boundary of a membership function is the

region of universe that is characterized by a nonzero but incomplete member-

ship in the set. Hence, core consists of all those elements y of the universe of

information such that,

1 > µÃ(y) > 0;

60



CHAPTER 4. FUZZY LOGIC

Figure 4.4: Features of membership function.

4.4 Fuzzy Inference Process

The fuzzy inference process is the set of deduction rules that must be applied to a

given system to obtain results through the use of fuzzy logic. It can be divided into

the following phases:

1. Fuzzi�cation: it may be de�ned as the process of transforming a crisp set

to a fuzzy set or a fuzzy set to fuzzier set. Basically, the current values are

applied to the membership functions to determine the degree of truth of each

rule of the premise;

2. Inference: calculated the truth value for the premises, the result is applied

to the �nal part of each rule. The results obtained in a fuzzy subset must be

assigned to each output variable for each rule. To do this, only min or product

rules are usually used. In the �rst rule the output membership function is

"truncated" to the degree of truth calculated from the rule of the premise,

while in the second rule the exit membership function is multiplied by the

degree of truth calculated by the rule of the premise.

3. Composition: all fuzzy subsets assigned to each output variable are combined

together to form a single fuzzy subset for each output variable. Usually max

or sum are used. In the max composition, the fuzzy subset obtained is

constructed by taking the maximum value among all those obtained from the

61



CHAPTER 4. FUZZY LOGIC

fuzzy subsets assigned to a variable by the inference rule (logical function

OR), while in the sum composition the combined output of the fuzzy subset

is constructed by taking the sum of the maximum values obtained from all

the fuzzy subsets assigned to an output variable from the inference rule.

4. Defuzzi�cation: it may be de�ned as the process of reducing a fuzzy set into

a crisp set or to convert a fuzzy member into a crisp member. There are may

defuzzi�cation methods [38] (see Figure 4.5) like:

• Centroid : also known as center of gravity or center of area, it returns the

center of area under the curve. This is the most commonly used tech-

nique; the only disadvantage of this method is that it is computationally

di�cult for complex membership functions;

• Bisector : it is the vertical line that will divide the region into two sub-

regions of equal area. It is sometimes, but not always, coincident with

the centroid line;

• Middle, Smallest and Largest of Maximum: MOM, SOM, and LOM

stand for Middle, Smallest, and Largest of Maximum, respectively. These

three methods key o� the maximum value assumed by the aggregate

membership function. If the aggregate membership function has a unique

maximum, then MOM, SOM, and LOM all take on the same value.

Generally the centroid method is the most used.

Figure 4.5: Defuzzy�cation methods.

62



CHAPTER 4. FUZZY LOGIC

4.5 Fuzzy Rules

Fuzzy rules are used to infer an output based on input variables. A rule is in the

form:

• Premise: x is A;

• Implication: IF x is A THEN y is B;

• Consequent: y is B.

In crisp logic, the premise "x is A" can only be true or false. However, in a

fuzzy rule, the premise "x is A" and the consequent "y is B" can be true to a

degree, instead of entirely true or entirely false. This is achieved by representing the

linguistic variables A and B using fuzzy sets.

Rules can connect multiple variables through fuzzy set operations using AND,

OR and NOT operators.

63



Chapter 5

Fuzzy Inference System

The variable α must be classi�ed taking into account some qualitative attributes

and it may has varying levels of validity between a maximum (1) and a minimum

(0). For this reason, it is necessary to generate linguistic rules of fuzzy inference to

realize a mapping of the inputs on the desired output.

Fuzzy Inference System (FIS) is the key unit of a fuzzy logic system having

decision making as its primary work. It uses the "IF...THEN" rules along with

connectors AND, OR and NOT for drawing essential decision rules. Following are

some characteristics of FIS:

• the output from FIS is always a fuzzy set irrespective of its input which can

be fuzzy or crisp;

• it is necessary to have fuzzy output when it is used as a controller;

• a defuzzi�cation unit would be there with FIS to convert fuzzy variables into

crisp variables.

The �ve functional blocks shown in Figure 5.1 give an overview of the construc-

tion of FIS.

64



CHAPTER 5. FUZZY INFERENCE SYSTEM

Figure 5.1: Functional blocks of FIS.

• Database: it contains fuzzy IF-THEN rules;

• Rule Base: it de�nes the membership functions of fuzzy sets used in fuzzy

rules;

• Decision-making Unit : it performs operation on rules;

• Fuzzi�cation Interface Unit : it converts the crisp quantities into fuzzy quan-

tities.;

• Defuzzi�cation Interface Unit : it converts the fuzzy quantities into crisp quan-

tities.

5.1 Methods of FIS

There are two methods of FIS, having di�erent consequent of fuzzy rules: Mamdani

Fuzzy Inference System and Takagi-Sugeno Fuzzy Model.

5.1.1 Mamdani FIS

In this work, Mamdami FIS [39] has been chosen to build a simple fuzzy inference

system, which consists of a minimum number of variables, and e�ciently solves the

HRC problem. In particular, the fuzzy inference process has been developed as a

two-input, one-output, three-rule problem, as shown in Figure 5.3. The whole fuzzy

inference system has been developed with the Fuzzy Logic Designer of MATLAB

(see Figure 5.2), which generates a .fis �le.

65



CHAPTER 5. FUZZY INFERENCE SYSTEM

Figure 5.2: Fuzzy Logic Designer.

Below, Mamdami FIS is directly explained with the implementation of the work.

Figure 5.3: Fuzzy inference system.

The �rst step is to select the inputs. Two data inputs have been selected:

1. the time derivative of the distance between human and robot, i.e., ḋ = d‖p̂H−pR‖
dt

;

2. the scalar product between the robot and the human velocity vectors, i.e.,

ṗTR ˆ̇pH .

66



CHAPTER 5. FUZZY INFERENCE SYSTEM

The �rst input is useful to distinguish cases when the operator and the robot are

getting closer and cases when they are moving away from each other. The scalar

product speci�es the relative direction of travel of the operator and the robot.

The next step is the fuzzi�cation step (red arrows of Figure 5.3). The ranges

of variability of each input have been de�ned, and the appropriate membership

function of each interval has been selected. This step requires attention to correctly

determine the degree to which the input belongs to each of the appropriate fuzzy

set, by assigning a fuzzy degree of membership in the interval from 0 to 1. Two

membership functions have been selected to represent positive (P) and negative

(N) values, a Z-shape and a S-shape, respectively. These functions, with di�erent

parameters, have been chosen to describe both ṗTR ˆ̇pH and ḋ. More detail about the

input ranges and membership functions are described in Chapter 7.

After the inputs are fuzzi�ed, the implication step (yellow arrows of Figure 5.3)

determines the degree to which each part of the antecedent is satis�ed for each rule.

The antecedent of the developed fuzzy inference rules has three parts, combined

through an AND method min to obtain an implicated number that represents the

result of the rule antecedent. Each rule is designed to represent one possible and

distinguishable scenario.

Since the �nal decision is based on the result of all the tested rules, the outputs

of the rules must be combined in some way. The aggregation step (green arrow

of Figure 5.3) is the process by which the fuzzy sets representing the outputs of

each rule are combined into a single fuzzy set, before the last defuzzi�cation step.

For each interval of the consequent, the maximum value of the fuzzy set is chosen

and the defuzzi�cation method is the calculation of the centroid, which returns the

center of the area under the curve, as shown at the end of Figure 5.3.

The output value, α, has been generated by analyzing di�erent possible risk

situations, with the aim both to avoid any collisions between human and robot, and

to be aligned with current ISO/TS 15066. The three rules are shown in Table 5.1.

67



CHAPTER 5. FUZZY INFERENCE SYSTEM

antecedent consequent

ḋ ṗTR ˆ̇pH α

N ∼ H

P N S

P P M

Table 5.1: Fuzzy rules: [S] Small, [M] Medium, [H] High, [N] Negative, [P] Positive,

[∼] any.

Note that the scalar product between the operator velocity and the robot velocity

(second input) is a complementary information to the derivative with respect to

the time of the distance between human and robot (third input). Since ṗTR ˆ̇pH =

‖ṗR‖‖ˆ̇pH‖ cos θ, when θ = 180◦, a critical situation is possible. The result of the

scalar product is a negative value, ṗTR ˆ̇pH < 0, but it is not possible to distinguish the

cases shown in Figure 5.4, in which the directions are opposite but it is not known

if the human and the robot are getting closer or are moving away from each other.

This is the reason why it is necessary to combine the scalar product information

with the time derivative of the distance between the human operator and the robot.

Figure 5.4: Problem of the scalar product.

5.1.2 Takagi-Sugeno FIS

In Takagi-Sugeno FIS [40], a typical rule has the form:

IF x is A and y is B THEN z = f(x, y)

68



CHAPTER 5. FUZZY INFERENCE SYSTEM

Here, A and B are fuzzy sets in antecedents and Z = f(x, y) is a crisp function

in the consequent.

About the fuzzy inference process, it works in the following way:

• Step 1: fuzzifying the inputs. Here, the inputs of the system are made fuzzy;

• Step 2: applying the fuzzy operator. In this step, the fuzzy operators must

be applied to get the output.

5.1.3 Comparison between the two Methods

The main di�erences between Mamdani and Sugeno are shown below:

• Output Membership function: the main di�erence between them is on the ba-

sis of output membership function. The Sugeno output membership functions

are either linear or constant;

• Aggregation and Defuzzi�cation procedure: the di�erence between them also

lies in the consequence of fuzzy rules and due to the same their aggregation

and defuzzi�cation procedure also di�ers;

• Mathematical rules: more mathematical rules exist for the Sugeno rule than

the Mamdani rule;

• Adjustable parameters: the Sugeno controller has more adjustable parameters

than the Mamdani controller.

Therefore, the choise of using Mamdami FIS to compute α is due in wanting a

scalar as output and not a function.

5.2 ROS-Simulink interface

Once the .fis is generated by the Fuzzy Logic Designer, it has been imported in

Simulink to allow the ROS-Simulink interface. The Simulink scheme is shown in

Figure 5.5. The following blocks have been used:

• ROS Subscribe, Publish and Blank Message;

• Enabled Subsystem;

• Bus Selector;

• Data Type Conversion

69



CHAPTER 5. FUZZY INFERENCE SYSTEM

• MATLAB Function;

• Mux;

• Fuzzy Logic Controller with Ruleviewer;

• Bus Assignment.

Figure 5.5: Implementation of Simulink scheme.

Subscribe, Blank Message and Publish are part of Robotics System Toolbox [41].

Robotics System Toolbox provides algorithms and hardware connectivity for devel-

oping autonomous robotics applications for aerial and ground vehicles, manipulators,

and humanoid robots. Toolbox algorithms include path planning and path following

for di�erential drive robots, scan matching, obstacle avoidance, and state estima-

tion. For manipulator robots, the system toolbox includes algorithms for inverse

kinematics, kinematic constraints, and dynamics using a rigid body tree representa-

tion. The system toolbox provides an interface between MATLAB and Simulink and

ROS that enables you to test and verify applications on ROS-enabled robots and

robot simulators. Robotics System Toolbox is useful for the study and simulation

of:

• Classical arm-type robotics: kinematics, dynamics, and trajectory genera-

tion. The Toolbox uses a very general method of representing the kinematics

and dynamics of serial-link manipulators using Denavit-Hartenberg parame-

ters or modi�ed Denavit-Hartenberg parameters. Operations include forward

kinematics, analytic and numerical inverse kinematics, graphical rendering,

manipulator Jacobian, inverse dynamics, forward dynamics and simple path

planning. It can operate with symbolic values as well as numeric, and provides

a Simulink blockset;

70



CHAPTER 5. FUZZY INFERENCE SYSTEM

• Ground robots: standard path planning algorithms, lattice planning, kino-

dynamic planning (RRT), localization (EKF, particle �lter), map building

and simultaneous localization and mapping, and a Simulink model of a non-

holonomic vehicle;

• Flying quadrotor robots.

Two ROS Subscribe blocks have been used, one for each input variable of fuzzy

inference system (ḋ and ṗTR ˆ̇pH), to acquire the respective values. A ROS Subscribe

block allows to enter the topic both manually, by writing its name and the message

type, or by selecting it from ROS network. The latter option is available only if

MATLAB is connected to the ROS master and the ROS network is running; in this

implementation the topics have been selected from ROS network. A ROS Subscribe

block has two outputs:

• Msg : this output is a ROS message (bus signal);

• IsNew : this output is a boolean indicating whether a message was received

during the previous time step: when IsNew is true, Msg holds the newly-

received message, when IsNew is false, Msg holds the last received message.

Both the ROS Subscribe blocks have a sample time set to −1 because in this

way they generate an output whenever a message arrives as input.

The Enabled Subsystem block allows to minimize the computation time of the

entire implementation. As can be seen in Figure 5.5, two Enabled Subsystem blocks

have been used.

Since theMsg output of the ROS Subscribe block is a bus signal, two Bus Selector

blocks have been used to extract the useful signal. Actually, in this implementation

this signal is unique for a block, but in any case the Bus Selector block must be

used to allow the subsequent operations.

For fuzzy logic, numerical variables are needed as input, therefore two Data Type

Conversion have been used, one for each bus signal, to convert them in double data

type.

Next, two MATLAB Function blocks have been used to manage both NaN

values, e.g., when there are no operators in the scene, and input values which are

smaller than the minimum acceptable value (minḋ for ḋ and minṗTR
ˆ̇pH

for ṗTR ˆ̇pH) or

71



CHAPTER 5. FUZZY INFERENCE SYSTEM

higher than the maximum one (maxḋ for ḋ and maxṗTR ˆ̇pH
for ṗTR ˆ̇pH). In detail:

ḋ =


maxḋ if ḋ = NaN ∨ ḋ > maxḋ

minḋ if ḋ < minḋ

ḋ otherwise

(5.1)

ṗTR ˆ̇pH =


minṗTR

ˆ̇pH
if ṗTR ˆ̇pH = NaN ∨ ṗTR ˆ̇pH < minṗTR

ˆ̇pH

maxṗTR ˆ̇pH
if ṗTR ˆ̇pH > maxṗTR ˆ̇pH

ṗTR ˆ̇pH otherwise.

(5.2)

Note that, when no operator is in the scene, the previous relations make a low

α value (see Table 5.1).

The outputs of this two blocks have been put into a Mux (Multiplexer), whose

output is the input of Fuzzy Logic Controller with Ruleviewer. The Fuzzy Logic

Controller with Ruleviewer block implements a fuzzy inference system in Simulink

and displays the fuzzy inference process in the Rule Viewer during the simulation.

An example is shown in Figure 5.6.

Figure 5.6: Fuzzy Logic Controller with Ruleviewer: Interactive mode.

72



CHAPTER 5. FUZZY INFERENCE SYSTEM

The Fuzzy Logic Controller with Ruleviewer block:

• only supports double-precision data;

• uses 101 points for discretizing output variable ranges;

• only supports interpreted execution simulation mode;

• does not have additional output ports for accessing intermediate fuzzy infer-

ence results.

To make the Fuzzy Logic Controller with Ruleviewer work, the .fis �le name

must be speci�ed. As refresh rate, i.e., the rate, in second, which allows the viewer,

during the simulation, to display updates at the speci�ed speed to show the inference

process for the last values of the input signal, the default one has been chosen (i.e.,

2 s).

The computation of S (Equation 4.1) has been done in a ROS node, so the α

value must be transferred in ROS. To publish the α value on a ROS topic, the ROS

Publish block has been used; it takes in as its input a Simulink nonvirtual bus that

corresponds to the speci�ed ROS message type and publishes it to the ROS network.

It uses the node of the Simulink model to create a ROS publisher for a speci�c topic.

This node is created when the model runs and is deleted when the model terminates.

If the model does not have a node, the block creates one. For simulation, this input

is a MATLAB ROS message; in code generation, it is a C++ ROS message. The

procedure for entering the topic name is the same as the one described before for

ROS Subscribe.

Since the ROS Publish block accepts a ROS message, i.e., a bus signal as in-

put, it has been necessary to use a Blank Message and Bus Assignment block.

The Blank Message block served to create a blank message with the speci�ed mes-

sage type (geometry_msgs/PointStamped in this implementation), so the output

of this block is a bus signal; the Sample time has been set to inf , which is the

default value indicating that the block output never changes. This output has

been put into a Bus Assignment with the output of Fuzzy Logic Controller with

Ruleviewer block, to assign a new value to the signal (i.e., α) on the bus, (i.e,

geometry_msgs/PointStamped.Point.X). Finally, the Simulation stop time has

been set equal to inf to allow the scheme to work for the whole duration of the

73



CHAPTER 5. FUZZY INFERENCE SYSTEM

experiment.

A ROS node from Simulink has been created through the Build Model option [42].

This option allows to con�gure a model to generate C++ code for a standalone ROS

node. The guide of this con�guration is described below:

• Click on Model Con�guration Parameters icon;

• In the Hardware Implementation pane, set Hardware board to Robot Operating

System (ROS) (see red rectangles in Figure 5.7(a)). The Hardware board

settings section contains settings speci�c to the generated ROS package, such

as information to be included in the package .xml �le;

• In the Solver pane, in Solver options the Type must be set to Fixed-step, and

Fixed-step size must be set to 0.05 (see red rectangles in Figure 5.7(b)). In

generated code, the Fixed-step size de�nes the actual time step, in seconds,

that is used for the model update loop. However, it can be made smaller;

This procedure has been made to make the whole system operating independent

from MATLAB and Simulink. In fact, with the ROS node generation, only the ROS

environment is required to run the system, and the FIS parameters can be modi�ed

from the ROS node directly.

74



CHAPTER 5. FUZZY INFERENCE SYSTEM

(a) Hardware implementation pane.

(b) Solver pane.

Figure 5.7: Build Model con�guration.

75



Chapter 6

Trajectory Scaling

SSM scenarios usually sacri�ce the production time because a lot of time is spent in

low speed mode when a human operator is inside the collaborative workspace. On

the contrary, the proposed strategy ensures human-robot coexistence according to

the standard regulations, and also guarantees the task e�ciency by using a time-

scaling approach to change robot operating speed without introducing acceleration

discontinuities.

A typical industrial pre-programmed task, T , is composed by N positions, q̃i,

associated to velocities ˙̃qi, accelerations ¨̃qi and time instants t̃i with i = 1, . . . , N .

Typically, the pre-programmed joint positions have to be interpolated according to

the sampling time Tc required by the robot control interface. In this work a quintic

interpolation is used, i.e., the planned interpolated trajectory is

q̃h = p5(th; T ) (6.1)

˙̃qh = p4(th; T ) (6.2)

th+1 = th + Tc, (6.3)

where th is the h-th discrete time instant, p4 is the derivative of the polynomial

p5, q̃h and ˙̃qh are the planned joint position and velocity at time th, respectively.

76



CHAPTER 6. TRAJECTORY SCALING

Figure 6.1: Relation between d and k.

The proposed algorithm modulates the robot speed by scaling the time with a

safety scale factor k, which can assume values in the interval [0, 1]. The scale factor

is related to d (Section 3.4) as shown in Figure 6.1. When d is below the minimum

protective distance S, k is 0 and the robot stops (according to the regulation).

When the distance d is far from S, i.e., d > νS (ν > 1), the robot can move at full

speed to improve the production time. Between S and νS the function in Figure 6.1

smoothly varies to avoid acceleration discontinuities. Obviously, ν is another design

parameter that change the size of the scaled speed mode zone.

Practically, the trajectory is scaled computing Equation 6.1 using a scaled time

τh, i.e.,

qh = p5(τh; T ) (6.4)

τh+1 = τh + kTs (6.5)

where qh is the actual joint commands at time th. Obviously the joint command

qh, as well as the scaled time τh, are generated with sampling time Ts.

This approach e�ectively scales the joints velocities. In fact, using Equation 6.5,

τ̇ ≈ τh+1 − τh
Ts

= k (6.6)

so, by deriving Equation 6.4,

77



CHAPTER 6. TRAJECTORY SCALING

q̇h = p4(τh; T )k. (6.7)

This means that the velocity is scaled by the safety factor k.

This approach guarantees that the task T remains the same in position, but,

simultaneously, the resulting velocity is scaled according to k.

When the operator is going to be into a dangerous situation, the robot operates

at diminished capacity with limits on velocity that respect human robot collabora-

tion norms, until the safety restoration. Notice that the side e�ect of the velocity

reduction is the reduction of the minimum protective distance S, since this value is

proportional to the robot velocity. Experimental results are shown in Chapter 7.

78



Chapter 7

Experimental results and Validation

This section shows an example of experimental results obtained by simulating an

SSM human-robot collaboration task inside the collaborative workspace of Figure

3.5. A manufacturing industrial sealing operation has been virtually realized: the

robot executes a pre-planned path at a given nominal speed, while, suddenly, a hu-

man operator enters the collaborative workspace to perform some manual operation

close to the robot, at di�erent distances.

The main goal of this experiment is to prove the e�ciency of the fuzzy inference

approach into industrial applications to better handle the production time and, at

the same time, to guarantee the safety of the operators when they are inside the

collaborative workspace.

Table 7.1 sums up the used hardware and experimental case study.

Robot Yaskawa SIA5F

Collaborative workspace 4x2 m

Depth camera (1) Microsoft Kinect v1

Depth camera (2) Intel RealSense D435

Robot simulated task Sealing operation

Operator simulated task Manual piece change

Table 7.1: Case study and available hardware.

The covariance matrix Q2 of Equation 3.9 has been chosen as

79



CHAPTER 7. EXPERIMENTAL RESULTS AND VALIDATION

Q2 = diag(0.02, 0.05, 0.05) m2/s2, (7.1)

while the noise covariance has been estimated as

N = diag(0.0009, 0.0008, 0.001) m2. (7.2)

The description of how the parameters to compute the protective separation

distance S of Equation 1.4 and Equation 4.1 have been obtained is present below.

To compute the time required by the robot system to respond to the operator's

presence, TR, the rate of the topic on which the value of the variable d is published

has been observed because d is a �nite value when someone enters the scene. The

rate of this topic is about 10 Hz.

About TS, the response time of the machine which brings the robot to a safe,

controlled stop, of the joint L has been computed. The robot, completely extended in

a vertical position, has been stopped after having performed a trajectory maximum

speed (i.e., safety scale factor k equal to 1) forming a 90◦ angle, as shown in Figure

7.1.

Figure 7.1: Robot con�gurations.

The choice to position the robot in a vertical con�guration is due to the worst

case evaluation, and moving only the joint L, kinematic singularity has been avoided.

The trajectory has been recorded in order to be able to evaluate TS by means of a

.bag �le.

80



CHAPTER 7. EXPERIMENTAL RESULTS AND VALIDATION

To compute the Euclidean distance travelled by the robot while braking, B, the

same test has been carried out for the computation of TS in order to assess here too

the worst case.

The absolute accuracy of the robot, ZR, i.e., the deviation or error between po-

sition achieved with the assigned posture and position calculated by forward kine-

matics. The absolute accuracy of the robot has typical values between 0.2 and 1

mm and they are not present in any datasheet.

The sensor uncertainty ZS has been calculated as the sum of Microsoft Kinect

v1 and Intel RealSense D435 uncertainties. For both depth cameras, a 2D point

of pixel coordinates has been taken from the depth image viewer, obtained the z

Cartesian coordinate and 2D point of Cartesian coordinates has been calculated

from 2D point of pixel coordinates, from z and from the intrinsic parameters of the

used depth camera. Finally, the norm of the point in Cartesian coordinates has been

computed. The sum of the respective norms has established the value of ZS.

The intrusion distance C, based on the operator reach, has been chosen to better

appreciate the zero speed zone.

The values of all these parameters are reported in Table 7.2.

TR 0.10 s

TS 0.08 s

B 0.563 mm

ZR 0.001 m

ZS 0.1067 m

C 0.20 m

Table 7.2: Constant parameters of S.

About the membership functions and the ranges of FIS input variables, in Figures

7.2(a) and 7.2(b) are shown the choises made for ḋ and ṗTR ˆ̇pH , respectively. In Figure

7.3, instead, are shown the choises made for α.

81



CHAPTER 7. EXPERIMENTAL RESULTS AND VALIDATION

(a) ḋ range and membership functions.

(b) ṗT
R
ˆ̇pH range and membership functions.

Figure 7.2: FIS input variables.

82



CHAPTER 7. EXPERIMENTAL RESULTS AND VALIDATION

Figure 7.3: FIS output variable.

Figures 7.2 and 7.3 show that:

• ḋ ∈ [−1.5, 1.5];

• ṗTR ˆ̇pH ∈ [−0.5, 0.5].

Therefore, with reference to Equations 5.1 and 5.2:

• minḋ = −1.5 m/s;

• maxḋ = 1.5 m/s;

• minṗTR
ˆ̇pH

= −0.5 m2/s2;

• maxṗTR ˆ̇pH
= −0.5 m2/s2.

Figure 7.4 shows the results of the experiment.

83



CHAPTER 7. EXPERIMENTAL RESULTS AND VALIDATION

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70
-1

-0.5

0

0.5

1

-0.15

-0.1

-0.05

0

0.05

Figure 7.4: Experiment: An operator enters the shared workspace while the robot is

moving. The top plot shows the estimated distance robot-operator (d), the protec-

tive distances proposed by the regulation without sensing (SISO) and the protective

distance proposed by the work (S). The bottom plot shows the trajectory scaling

factor k, the time derivative of the distance ḋ and the velocity scalar product.

The graph at the top of the Figure shows the distance between the human oper-

ator and the robot and it can be compared with the minimum protective distance

computed as in Equation 1.4 (SISO in the legend) and the two thresholds proposed

in this work: S in the legend is the protective distance computed as in Equation 4.1

and νS is the threshold used in the trajectory scaling algorithm (see Chapter 6).

In this experiment, the ν parameter has been set to 350% of S. The bottom plot

of Figure 7.4 shows the two inputs of the fuzzy inference system (ḋ and ṗTR ˆ̇pH) and

the trajectory scale factor k. In this experiment SISO is not used and it is showed

in the plot for comparison purposes.

The robot executes a planned task, suddenly (at about 16 s) an operator enters

into the workspace simulating a manual piece change task. This is visible in the

top plot of Figure 7.4, where the human-robot distance decreases. Note that for

almost the whole task duration the separation distance robot-operator is below the

SISO signal, this would have caused frequent starts and stops of the robot. Instead,

through the proposed trajectory scaling algorithm, the robot reduces its velocity

84



CHAPTER 7. EXPERIMENTAL RESULTS AND VALIDATION

according to the observed separation distance. This is visible in the k signal of

the bottom plot that varies according to d. Notice that k goes to 0 only when the

distance d goes below the protective distance S.

Moreover, another property of the proposed solution is that S increases only

when the distance decreases (i.e., when ḋ < 0) and not when the distance increases.

This is due to the computation of the directed speed and the fuzzy rules.

The shown experiment demonstrates how the proposed approach guarantees a

safe human-robot coexistence in the collaborative workspace. This is achieved in

accordance with the ISO/TS regulations and, simultaneously, minimizing dead times

in the production process.

85



Chapter 8

Conclusion and Future developments

The human-robot interaction and their intentions to compete or cooperate in col-

laborative workspaces are challenging research �elds. The purpose of this work is to

improve the current regulations both to maximize the production time and guaran-

tee the safety of human operators inside the shared workspace. In this paper, the

expected human movements relative to the robot are classi�ed to identify all possi-

ble industrial SSM scenarios from which fuzzy control rules for the robot reactions

are derived. The time schedule of the information �ow and their processing are

presented to discuss the novel approach and its e�ciency. Collisions between robot

and human operators are avoided by identifying human-robot intersections through

a detection algorithm which processes data obtained from merging of two depth

camera images. In the context of the recognition of human approach to a moving

robot, travel directions are modeled by fuzzy inference logic. Results obtained from

experimental data show the applicability of the presented methods to many common

manufacturing industry applications.

For future developments, sensors with better quality than the ones considered in

this work or in higher number and of di�erent technlogies could be used in order to

improve precision and accuracy of human detection. For example, a thermal camera

could be used to allow the humans recognition from other objects in the scene. In

this way, the condition νS < d < S in which the robot velocity is scaled (Chapter

6) would not be valid for the objects but only for the human operators.

86



References

[1] LABOR, �Lean robotized AssemBly and cOntrol of composite aeRostructures.�

[Online]. Available: https://www.labor-project.eu/

[2] �Machinery Directive 2006/42/EC,� European Parliament, 2006. [On-

line]. Available: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=

celex%3A32006L0042

[3] �Safety of machinery - General principles for design - Risk assessment and risk

reduction.� International Organization for Standardization, Technical report,

2010.

[4] �Robots and robotic devices - Safety requirements for industrial robots. Part 2:

Robot system and integration.� International Organization for Standardization,

Technical report, 2011.

[5] �Industrial safety.� International Organization for Standardization, Technical

report, 2015.

[6] �Robots and robotic devices - collaborative robots.� International Organization

for Standardization, Technical report, 2016.

[7] �Robots and robotic devices - Safety requirements for industrial robots. Part

1: Robots.� International Organization for Standardization, Technical report,

2011.

[8] �Safety of machinery - Electrical equipment of machines - Part 1: General

requirements.� International Electrotechnical Commission, Tech. Rep., 2009.

87

https://www.labor-project.eu/
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006L0042
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006L0042


REFERENCES

[9] A. Bicchi, M. A. Peshkin, and J. E. Colgate, �Safety for physical human�robot

interaction,� in Springer Handbook of Robotics. Springer Berlin Heidelberg,

2008, pp. 1335�1348.

[10] J. Heinzmann and A. Zelinsky, �Quantitative safety guarantees for physical

human-robot interaction,� The International Journal of Robotics Research,

vol. 22, no. 7-8, pp. 479�504, jul 2003.

[11] S. Haddadin, A. Albu-Scha�er, M. Frommberger, J. Rossmann, and

G. Hirzinger, �The dlr crash report: towards a standard crash-testing protocol

for robot safety - part II: Discussions,� in 2009 IEEE International Conference

on Robotics and Automation. IEEE, 2009, pp. 280�287.

[12] A. Cirillo, F. Ficuciello, C. Natale, S. Pirozzi, and L. Villani, �A conformable

force/tactile skin for physical human�robot interaction,� IEEE Robotics and

Automation Letters, vol. 1, no. 1, pp. 41�48, jan 2016.

[13] F. Flacco, T. Kroger, A. D. Luca, and O. Khatib, �A depth space approach to

human-robot collision avoidance,� in 2012 IEEE International Conference on

Robotics and Automation. IEEE, may 2012.

[14] P. Rybski, P. Anderson-Sprecher, D. Huber, C. Niessl, and R. Simmons, �Sensor

fusion for human safety in industrial workcells,� in 2012 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems. IEEE, oct 2012.

[15] P. Zhang, P. Jin, G. Du, and X. Liu, �Ensuring safety in human-robot coexisting

environment based on two-level protection,� Industrial Robot: An International

Journal, vol. 43, no. 3, pp. 264�273, may 2016.

[16] L. Bascetta, G. Ferretti, P. Rocco, H. Ardo, H. Bruyninckx, E. Demeester,

and E. D. Lello, �Towards safe human-robot interaction in robotic cells: An

approach based on visual tracking and intention estimation,� in 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE, sep 2011.

88



REFERENCES

[17] M. Lippi and A. Marino, �Safety in human-multi robot collaborative scenarios:

a trajectory scaling approach,� IFAC-PapersOnLine, vol. 51, no. 22, pp. 190�

196, 2018.

[18] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias, �Safety in

human-robot collaborative manufacturing environments: Metrics and control,�

IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2, pp.

882�893, apr 2016.

[19] �Safety of machinery - Positioning of safeguards with respect to the approach

speeds of parts of the human body.� International Organization for Standard-

ization, Technical report, 2010.

[20] Z. Zhang, �Microsoft kinect sensor and its e�ect,� IEEE Multimedia, vol. 19,

no. 2, pp. 4�10, feb 2012.

[21] Intel, �Intel RealSense D435.� [Online]. Available: https://click.intel.com/

intelr-realsensetm-depth-camera-d435.html

[22] ROS, �ROS website.� [Online]. Available: http://www.ros.org/

[23] ROS, �RViz.� [Online]. Available: http://wiki.ros.org/rviz

[24] MathWorks, �MATLAB.� [Online]. Available: https://www.mathworks.com/

products/matlab.html

[25] MathWorks, �Simulink.� [Online]. Available: https://www.mathworks.com/

products/simulink.html

[26] ROS, �STOMP.� [Online]. Available: http://wiki.ros.org/stomp_motion_

planner

[27] R. B. Rusu and S. Cousins, �Point cloud library (pcl),� in 2011 IEEE Interna-

tional Conference on Robotics and Automation, 2011, pp. 1�4.

[28] PCL, �PCL: Tutorials and walkthrough.� [Online]. Available: http:

//www.pointclouds.org/documentation/tutorials/walkthrough.php

89

https://click.intel.com/intelr-realsensetm-depth-camera-d435.html
https://click.intel.com/intelr-realsensetm-depth-camera-d435.html
http://www.ros.org/
http://wiki.ros.org/rviz
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
http://wiki.ros.org/stomp_motion_planner
http://wiki.ros.org/stomp_motion_planner
http://www.pointclouds.org/documentation/tutorials/walkthrough.php
http://www.pointclouds.org/documentation/tutorials/walkthrough.php


REFERENCES

[29] ROS, �Camera calibration.� [Online]. Available: http://wiki.ros.org/camera_

calibration

[30] S. Choi, T. Kim, and W. Yu, �Performance evaluation of ransac family,� in

Procedings of the British Machine Vision Conference 2009. British Machine

Vision Association, 2009.

[31] C. Papazov and D. Burschka, �An e�cient ransac for 3d object recognition

in noisy and occluded scenes,� in Computer Vision � ACCV 2010. Springer

Berlin Heidelberg, 2011, pp. 135�148.

[32] N. Blodow, �Realtime urdf �lter,� 2012.

[33] S. I. Choi and B. K. Kim, �Obstacle avoidance control for redundant manip-

ulators using collidability measure,� in Proceedings 1999 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems. Human and Environ-

ment Friendly Robots with High Intelligence and Emotional Quotients (Cat.

No.99CH36289). IEEE, 1999.

[34] P. Bosscher and D. Hedman, �Real-time collision avoidance algorithm for

robotic manipulators,� in 2009 IEEE International Conference on Technolo-

gies for Practical Robot Applications. IEEE, nov 2009.

[35] G. Welch, G. Bishop et al., �An introduction to the kalman �lter,� 1995.

[36] T. J. Ross, Fuzzy Logic with Engineering Applications. John Wiley & Sons,

Ltd, jan 2010.

[37] L. Zadeh, �Fuzzy sets,� Information and Control, vol. 8, no. 3, pp. 338�353, jun

1965.

[38] MathWorks, �Defuzzi�cation Methods.� [Online]. Available: https://it.

mathworks.com/help/fuzzy/examples/defuzzi�cation-methods.html

[39] I. Iancu, �A mamdani type fuzzy logic controller,� in Fuzzy logic-controls, con-

cepts, theories and applications. IntechOpen, 2012.

90

http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration
https://it.mathworks.com/help/fuzzy/examples/defuzzification-methods.html
https://it.mathworks.com/help/fuzzy/examples/defuzzification-methods.html


REFERENCES

[40] J. J. Buckley, �Sugeno type controllers are universal controllers,� Fuzzy sets and

systems, vol. 53, no. 3, pp. 299�303, 1993.

[41] MathWorks, �Robotics System Toolbox.� [Online]. Available: https:

//www.mathworks.com/products/robotics.html

[42] MathWorks, �Generate a Standalone ROS Node from Simulink.�

[Online]. Available: https://www.mathworks.com/help/robotics/examples/

generate-a-standalone-ros-node-from-simulink.html

91

https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/help/robotics/examples/generate-a-standalone-ros-node-from-simulink.html
https://www.mathworks.com/help/robotics/examples/generate-a-standalone-ros-node-from-simulink.html

