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Abstract

Il monitoraggio dell’area di lavoro è una componente fondamentale delle moderne

celle di lavoro industriali o in scenari di robotica di servizio in cui gli operatori umani

condividono lo spazio di lavoro con i robot. Equipaggiare la cella con un adeguato

sistema di percezione consente di implementare algoritmi di visione sensoriale per

rilevare in modo affidabile la presenza umana. La scelta della tecnologia impie-

gata deve garantire la sicurezza degli operatori, quindi fornire degli input corretti

all’architettura che monitora la velocità del robot, per poter applicare le normative

in vigore sulla collaborazione uomo-robot. La presente tesi propone l’impiego di un

nuovo sistema di percezione multimodale per il tracciamento umano , costituito da

due sensori: una camera di profondità per identificare la forma ed il volume del corpo

umano, ed una termocamera che supporta la prima informazione con la misura della

temperatura. La strategia presentata si basa su una tecnica di Machine Learning.

Dopo aver fuso le immagini di profondità con le immagini termiche correttamente

sovrapposte, una rete neurale convolutiva è stata addestrata per predire la presenza

di operatori umani nella scena osservata. La strategia consente inoltre di localiz-

zare gli operatori e, quindi, utilizzare le stime ottenute per implementare scenari di

collaborazione di tipo SSM (Speed and Separation Monitoring). Un’ampia sezione

sarà dedicata ai risultati sperimentali per valutare l’applicabilità e le performance

degli algoritmi presentati.
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Abstract

Workspace monitoring is a critical hw/sw component of modern industrial work cells

or in service robotics scenarios, where human operators share their workspace with

robots. Sensory vision algorithms for reliable detection of human presence have been

realized by equipping the robotic cell with a proper vision system. The choice of the

adopted technology must guarantee the operators safety. Therefore, it provides the

correct information to modulate the robot speed according to the current regulations,

when a dangerous situation occurs. The work proposes a new multimodal perception

system for a robust human detection, consisting of two sensors: a depth camera,

which identifies the shape and the volume of the human body and allows to compute

an accurate separation distance between the operator and the manipulator, and a

thermal camera which improves the recognition. The developed strategy is based on

a machine learning approach that processes merged images containing both depth

and temperature data. A convolutional neural network predicts online the presence

of the human operator into the observed scene. Therefore, the strategy localizes the

human operator to implement a typical SSM (Speed and Separation Monitoring)

collaborative scenario. To evaluate the applicability and the performance of the

proposed algorithms, experimental results will be finally reported.

7



Chapter 1

Introduction

The thesis proposes a sensor fusion strategy which combines depth and thermal

images to robustly detect human operators, Nowadays, industrial workcells or pro-

fessional service robotics applications requires human-robot cooperation. Realize

human safety is the current research challenge. The main idea is based on a sensor

fusion approach: the depth image, which recognizes the human body shape, and

the thermal image, which recognizes the common human body temperature about

37°C, have been merged to obtain a single image of greater information content.

The two images has been combined together through a novel calibration method.

The output images have been used to train a classifier that detects human presence

in the scene and a detector that locates the human in the scene through the identifi-

cation of bounding boxes. The detection algorithm is then interfaced a point-cloud

based segmentation pipeline which computes the separation distance between the

identified human operator and the moving robot. The whole architecture has been

developed to implement a common SSM collaborative scenario, compliant with the

actual ISOs standards.

1.1 Context

The safety standards for industrial robotic operations are laid out by the Interna-

tional Organization for Standardization (ISO) 10218-1 [1], 10218-2 [2] and by the

upcoming ISO Proposed Draft Technical Specification (TS) 15066 [3]. Four types

of collaborative scenarios are identified, which are addressed in post-collision and

pre-collision scenarios [4]. Industrial safety requirements do not permit to have the

use of post-collision systems because the physical impact between the robot and the

human operator occurs before the complete stop of the machinery. Otherwise, a

pre-collision scheme makes use of appropriate exteroceptive sensors to detect hu-

8



CHAPTER 1. INTRODUCTION 9

mans and prevent collisions. A Speed and Separation Monitoring (SSM) scenario

requires that the robot speed should be monitored according to the robot separation

distance from the human operator.

1.2 State of the art

Distance monitoring can be solved through motion capture systems, range sensors

or artificial vision systems [5]. Nevertheless, localizing human operators robustly is

not an easy task. It is often necessary to fuse several sensors with different proper-

ties.

Originally developed for military applications, thermal cameras provide relevant

data to perform breast cancer diagnostic [6], infrastructure and electrical systems

monitoring, gas or liquid detection [7], inspection and control tasks in industrial

applications [8]. Thermal cameras are ideal for finding objects of a certain tem-

perature: human detection and tracking (HDT) well fits for this case, as the body

temperature is about 37◦C. Unfortunately, thermal cameras do not support depth

information, which are necessary to correctly compute the separation distance be-

tween the operator and the robot and apply the current regulations.

The main difficulty of fusing spatial and thermal images is that a correspondence

between corresponding pixels needs to be found. Similar sensor fusion approaches

for indoor human detection combine RGB data with depth information [9], using

the Histogram of Oriented Gradients (HOG) proposed in [10] together with depth

feature that describes the self-similarity of an image. Different strategies are based

on Convolutional Neural Networks (CNN), widely used for object recognition [11]

and human detection [12]. A CNN-based RGB-D human detector exploiting the

depth information to develop a region of interest selection method (ROI) is pro-

posed in [13]. However, the fusion of thermal and spatial information has gained

attention in the last few years, especially in fields where the spatial data are used

as the main source of information [14], but nowadays there are no standardized

methods to robustly combine them.

1.3 Contributions

This thesis tackles the Human-Robot Collaboration (HRC) problem by introduc-

ing a novel approach to robustly detect human operators in collaborative work cells

through a multimodal perception system aimed at minimizing false positives to avoid

unnecessary robot stops. The architecture allows computing the separation distance
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between the robot and the operator and follows the line of the current regulations

ensuring the operators safety. The applicability of the approach in manufacturing

industry has been obtained not by modifying the robot predefined path but by using

the relative position of the human operator and the robot to define a safety metric

to scale down the robot trajectory only when indispensable, thus trying to maximize

the production time, i.e., in presence of humans.

The project was developed as an integration to the European project Labor [15].

The general objective of the project is to increase the level of automation of the

current assembly process of fuselage parts such as panels and frames of a regional

aircraft, by means of lean and flexible automated solutions in replacement of manual

assembly or complex ad-hoc machine constructions and high-payload robots used in

conjunction with external metrology systems. The adoption of such a solution will

also allow human operators to share the area with robots during the manufacturing

process, being this one of the key aspect of Industry 4.0.

Figure 1.1: Labor Logo

1.4 Outline

After a general overview of the Software and Hardware described in Chap. 2, the

next chapters have been structured in order to deal with different problems and as-

pects independently. Chap. 3 deals with the problem of Sensor Fusion, introducing

the cameras calibration method and describing the real pixel-by-pixel fusion algo-

rithm. Since Chap. 5 and Chap. 6 deal with a standard Machine Learning problem

concerning image classification and the object detection through the use of Convolu-

tional Neural Networks(CNN), there is a complete overview of CNNs in Chap. 4 that

explains the possible operations and the structure layers and shows the basic archi-

tecture of modern CNNs. The merged images resulting from sensor fusion algorithm



CHAPTER 1. INTRODUCTION 11

described in Chap. 3 is used for the Classification and Detection algorithms. Finally,

the developed algorithms are used and interfaced within an available segmentation

pipeline which computes the separation distance between the human operator and

the robot and modulates the robot speed according to the actual regulations in the

Chap. 7.



Chapter 2

Software and Hardware

description

Industrial robots are finding large range of applications where they often have to

perform actions in collaborative scenarios. A good architecture to percept the shared

workspace is composed by a multimodal perception system which allows to imple-

ment robust algorithms to detect and localize human operators.

2.1 Hardware description

The following section is an overview of the hardware devices proposed to solve the

human detection task. The operating principles and the technical characteristics of

the chosen sensors are described in detail.

2.1.1 Depth Sensors

The ability to measure the distance, known as ”range” or ”depth”, for a given point

in a scene is the essential characteristic that distinguishes a depth camera from a

conventional 2D video camera. There are various types of technologies such as the

common Laser Range Finders that can only provide a single depth point and can

use Time-of-flight or triangulation techniques. Another depth sensor variant is the

scanning Lidar used in some automobiles where a few beam are scanned across the

scene and a depth map is built up over time.

12



CHAPTER 2. SOFTWARE AND HARDWARE DESCRIPTION 13

Figure 2.1: Kinect depth image on the left and Realsense depth image on the right.

Working principles

The Time of flight (ToF) technology is based on measuring the time that light emit-

ted by an illumination unit requires to travel to an object and back to the sensor

array: the scene is actively illuminated using a pulse of an emitted periodic radi-

ation, e.g. laser, infra-red light or near infrared light (NIR). Assuming sensor and

lighting placed in the same position, due to the distance between the sensor plane

and the object, a time shift is caused in the optical signal which is equivalent to a

phase shift in the periodic signal. This shift is detected in each sensor pixel by a

so-called mixing process.

The Structured light approach is an active stereo vision technique that provides

the projection of known patterns on objects in the scene with the aim of calculating

the depth and surface information of the objects. Although many other variants of

structured light projection are possible, patterns of parallel stripes are widely used:

the way that these deform when striking surfaces allows for an exact retrieval of the

3D coordinates of any details on the object’s surface.

The triangulation can be seen as a process of determining a point in 3D space given

its projections onto two images coming from two different cameras which frame the

same scene from two different views. This process is the basis of stereovision and

3D reconstruction and it is based on the human visual perception system. Given

the two images and knowing the spatial relation between the camers, the corren-

sponding 3D point can be calculated by equipolar geometric consideration (figure

2.2).
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Figure 2.2: Stereo Vision Model

Depth Cameras

The adopted depth cameras are:

� A Microsoft Kinect v1, which is a single set-top unit that combines an RGB

visible spectrum camera and an infrared (IR) spectrum 3D camera.

� An Intel Realsense D435 which is a USB-powered depth camera and consists

of a pair of depth sensors, RGB sensor, and infrared projector.

Figure 2.3: Microsoft Kinect v1 on the left and Intel Realsense D435 on the right

The Intel camera was used to complete the Kinect Camera’s FoV as dark corners

were initially present with the use of Kinect alone. The Kinect v1 camera combines

structured light and stereo (Structure + Stereo) by utilizing an IR projection and two

IR image sensors to provide more accurate depth information: IR emitter project a

light pattern and an IR sensors detect the deformations in the projected pattern for
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resolving the depth. The technique of analyzing a known pattern is called structured

light and it is combined with the classic computer vision techniques of depth from

stereo: the camera analyzes the shift of the speckle pattern by projecting from one

location and observing from another. The depth map can be combined with a color

camera to produce point clouds.

2.1.2 Thermographic Camera

A thermographic camera or thermal imaging camera is a device that distinguishes

hot objects using infrared radiation. Unlike ordinary cameras operating between

400-700 nanometers of visible light range, the thermal camera operates in wave-

lengths as long as 14 µm.

Figure 2.4: Optris PI 450

All objects that have surface temperatures above absolute zero emit electromagnetic

radiation and a special camera can detect this radiation in a way similar to the way

an ordinary camera detects visible light. The emitted radiation is characterised

by two features: wavelength and intensity. These two parameters of the emitted

radiation are related to the temperature of the body surface through the following

formulas:

Qtot = σ · T 4 (2.1)

λmax = 2.9/T (2.2)

where σ = 5.67×10−8W ·m−2 ·K−4 the Stefan-Boltzmann constant, λmax is the peak

wavelength of emission, T is the surface temperature and Q is the total radiation

emitted by a body.

Images from infrared cameras tend to be monochrome or sometimes they are dis-

played in pseudo-color, i.e. the changes in color are used rather than changes in

intensity to display changes in the signal. This technique, called slicing, helps the
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human to appreciate the fine differences in intensity.

Figure 2.5: Thermal Image

The thermographic camera used in this vision system is the Optris PI 450 which has

a frame rate of 80 Hz and an optical resolution of 382 x 288 pixels. The detectable

temperature is within a range of -20 °C up to 900 °C while the spectral range is

between 7.5 to 13 µm. The small and compact shape makes it suitable for different

purposes and to be mounted in a vision system.

2.2 Software description

The section contains an overview of the software used for project development: the

interface between the cameras and the sensor fusion algorithm was developed using

the Robot Operating System (ROS), while the neural networks for the classifier and

the detector were developed through the Keras and Yolo frameworks, respectively,

then interfaced via ROS.

2.2.1 ROS

ROS [16] is an open-source robot operating system which includes a set of soft-

ware libraries and tools that help building robot applications that work across a

wide variety of robotic platforms. The operating system side provides standard

operating system services such as hardware abstraction, low-level device control,

message-passing between processes and package management. The ROS runtime

”graph” is a peer-to-peer network of processes: it consist of numerous small com-

puter programs which connect to each other and continuously exchange messages.
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ROS is tools-based since there are many small, generic programs that perform tasks

such as visualization, logging, plotting data streams, etc. Another ROS property

is the multi-linguages infact the software modules can be written in any language

for which a client library has been written: currently client libraries exist for C++,

Python, etc.

Figure 2.6: ROS logo

ROS is based on concepts as nodes, topics, messages and services. The nodes are

single-purposed executable programs e.g. sensor drivers, actuator drivers, mapper

and planner that are individually compiled, executed, and managed. Nodes are

written using a ROS client library (roscpp, rospy), they can can publish or subscribe

to a Topic and also provide or use a Service.

Nodes communicate with each other by publishing messages to topics so the topics

represent a stream of messages with a defined type.

2.2.2 Keras

Keras [17] is high-level neural networks API written in Python widely used for easy

prototyping. It is a deep learning library that supports both convolutional networks

and recurrent networks, as well as combinations of the two. Moreover it allows

the CNN to run on both CPU and GPU, according to the desired performance.

Keras offers two ways to organize the layers of the CNN depending on the chosen

network model. The simplest model type is the sequential one corresponding to

a linear stack of layers composed by many convolutional, activation and pooling

layers. The model needs to know the expected shape of the image input, i.e. the

number of channels and the input images resolutions. For the case study, there are

two channels, the first involved for the depth image and the second one involved for

the thermal image, and the input image size is about 388x288, that is the resolution

of the thermal camera.The input shape can be specified through the Dense 2D layer.

To train the selected model, the learning process has been set to optimize the output

classification accuracy. More in detail, the optimization method, the loss function to

be optimized and the metric to use for the classification problem, have to be selected
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to compile the learning process. The initial fit function starts the training process,

by acquiring both the training images data set and the corresponding labels. The

training process ends when the batch size, the number of epochs or the validation

data has been reached. Appendix B contains details of the developed Keras software.

Figure 2.7: Keras logo

2.2.3 YOLO framework

Current detection systems propose image classifiers to perform objects recognition

and localization. More recent approaches like R-CNN [18] combine region propos-

als with CNNs: for each image it extracts around 2000 bottom-up region proposals,

computes features for a proposal using a convolutional neural network and then clas-

sifies each region using class-specific linear Support Vector Machine (SVM). Then a

post-processing is needed to refine the bounding boxes and delete duplicate detec-

tions. These kind of pipelines are very complex, thus they are too slow and hard to

optimize because each individual component must be trained separately.

You only look once (YOLO) [19] is a new approach for real-time object detection

system and it is extremely fast and accurate. This framework deals with object

detection as a single regression problem and involves the application of a single neu-

ral network which divides the image into regions and predicts bounding boxes and

probabilities for each region. YOLO also makes predictions with a single network

evaluation unlike systems like R-CNN which require thousands for a single image.

This makes it extremely fast, more than 1000x faster than R-CNN. YOLO focuses

on an extreme speed/accuracy trade-off: as shown in Fig. 2.8, it runs significantly

faster than other detection methods with comparable performance and this is the

reason why this framework has been chosen for the case study.. After the first ver-

sion, two other versions have been released: YOLOv2 [20] and YOLOv3 [21] which

improve the accuracy while making it faster.
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Figure 2.8: Detection methods performance graph



Chapter 3

Sensor Fusion

Sensor fusion combines sensory data to obtain output data of grater information con-

tent [22]. Generally, original sensor data suffer from uncertainty, imprecision, limited

spatial and temporal coverage, thus a sensor fusion technique could partially solve

these limitations. Image fusion techniques combine multi-modality sensor image of

the same observed scene to provide an enhanced single view of a scene with extended

information content [23]. Image fusion is divided at the hierarchical level ,e.g. by

processing the features extracted from the input images, or at the low level, e.g. by

processing original sensor images. The case study adopted the second methodology:

the original depth data and the original thermal data have been merged to obtain

a single, fused image. The output image can be a gray scale image or a chromatic

image, according to the specific application target. The following ections explain

the methods adopted to the sensors calibration, the technique developed to map

the depth image pixels on the corresponding thermal image pixels and, finally, the

strategy proposed to perform image fusion.

3.1 Vision System Calibration

In many experimental applications of robotic research, the vision system is equipped

by a thermal camera as thermal information source. Generally, different approaches

combine it with depth information, that is acquired by different sources, e.g. a depth

camera, a laser range finder, a visual camera. Whatever is the source of acquisition,

the resulting multi-sensor system has to be extrinsically calibrated to select the re-

lation between the sensors. This step can be performed by using a calibration target

(e.g., a perforated grid), [24], [25]. However, some proposed solutions explain the

calibration approach with the only purpose of solving it, without a suitable contex-

tualization or not considering the applicability at all, basing on fairly conservative

20
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assumptions.

3.1.1 Pinhole Camera Model

The geometric model of pinhole camera consists of:

� a reference system (X,Y,Z) centered in O called the optical center and with

the Z-axis coinciding with the optical axis

� a second plane, called image plane with a reference system (u,v) centered in

the main point and with u and v axes oriented respectively as X and Y. The

image plane is at focal length from the origin O of the camera reference system.

Figure 3.1: Pinhole Model

Using similar triangles as

f

Z
=
−u
X

=
−v
Y

(3.1)

which gives us

u =
−f
Z
X (3.2)

v =
−f
Z
Y (3.3)

Given a vector P = [x, y, z]T , we use P̃ = [x, y, z, 1]T to denote the homogeneous

coordinates of P and PC = [u, v, 1]T to denote the homogeneous coordinates PC =
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[u, v]T .

Using homogeneous coordinates and matrix notation, we can write the 3.2 as

Z

uv
1

 =

−fx−fy
Z

 =

−f 0 0 0

0 −f 0 0

0 0 1 0



X

Y

Z

1

 (3.4)

The 3x4 matrix P is called the camera perspective projection matrix.

In the real case we have to consider the shape and size of the pixels and the position

of the image plane respect to the optical center. If the origin of the 2D image

coordinates system does not coincide with the Z axis intersects the image plane, a

translation defined by (tu, tv) must be performed. Furthermore, a reascaling of the

u and v axes is defined through the mu and mv parameters corresponding to the

inverse of the pixel size. Thus

u = mu
−fX
Z

+mutu (3.5)

v = mv
−fY
Z

+mvtv (3.6)

This can be expressed in matrix form as

Z

uv
1

 =

−muf 0 mutu 0

0 −mvf mvtv 0

0 0 1 0



X

Y

Z

1

 =

ax 0 u0 0

0 ay v0 0

0 0 1 0

 P̃ = K[I|0]

where K only depends on the intrinsic camera parameters like its focal length, prin-

cipal axis and thus defines the intrinsic parameters of the camera.

K =

ax 0 u0

0 ay v0

0 0 1


In general, the reference system of the camera (X, Y, Z) is in a different position

from the world reference system. We need to introduce a rigid transformation that

connects the two reference systems made up of a rotation R and a translation t.
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The extrinsic parameters E represent the coordinate transformation between the

reference frame and the sensor frame.

t =

t1t2
t3

 R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 E = {R | t}

3.1.2 Intrinsic Calibration

The intrinsic calibration of the cameras was carried out by using an available ROS

software [26] which generates a .yaml file containing the intrinsic parameters com-

patible with the ROS camera drivers. To use this tool you need to have a table with

a certain pattern that is clearly distinguishable from the camera.

A chessboard pattern is needed (see Fig. 3.2).

Figure 3.2: camera calibration tool on chessboard pattern

Differently from the depth camera calibration, the thermal camera intrinsic calibra-

tion needs a perforated plastic grid with a circular pattern: grid has been properly

heated to be clearly distinguishable from the thermal image, as shown in Fig. 3.3.

The adopted software requires the pattern set-up (number of columns, number of

the raws, the real size and the pattern type, e.g. square, circle). Once the pattern

is recognized the operator performs linear and angular movements to improve the

estimation of the calibration parameters. The structure of the output calibration

file is shown in Appendix A. This type of file is supported by the ROS drivers for the

Kinect camera and the Optris camera but is not supported for the Intel RealSense

camera drivers for which a calibration has been performed through the tool of the

parent company.
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Figure 3.3: camera calibration tool on grid pattern

3.1.3 Extrinsic Calibration Depth Camera

The purpose of the extrinsic calibration is to define the transformation matrix of the

camera frame expressed in the world frame Tworld
camera. The robot end effector has been

equipped with a pointed tool appropriately modeled in CAD and printed through

a 3D printer. To estimate the transformation matrix through the optimization of a

cost function once the input data are provided, a MATLAB script has been written.

The calibration algorithm provides the following steps:

� Move the robot to a certain i− th configuration such that the pointed tool is

visible from the depth camera.

� Collect the Cartesian points of the tip of the tool expressed in camera frame,

pcamera
i [x, y, z] indicated by the tip of the robot end effector within the P camera

matrix; the points coordinates are obtained by generating the Point Cloud of

the scene for each robot configuration and reading the coordinates of the space

portion pointed by the end effector assumed as a point.

� Collect the corresponding robot joint configurations and fill a 7xn Q matrix.

� The MATLAB script computes the Cartesian point of the tool tip through

the forward kinematic of the acquired robot configurations. The obtained

points are expressed in the robot base frame, pworld
i and organized in Pworld

matrix. Finally, the corresponding points matrices, Pworld and P camera, have

been used to estimate the transformation matrix between the camera and the

world frames through an optimization algorithm of a cost function.

This process for extrinsic calibration, described in more detail in following Algorithm

1, has been adopted for both the Kinect camera and the Realsense camera.
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Algorithm 1 Tworld
camera Estimation

1: input:

2: pcamera
i ← i-th point of the space in camera frame

3: qi ← i-th robot configuration in the joints space

4: P camera ← pi points collection

5: Q← qi points collection

6: Tinit = Tworld
camera initial estimation

7: procedure Transformation matrix between camera and world

frame Tworld
camera

8: for i = 1 : size(Q) do

9: K = Forward kinematics (qi)

10: Pworld
i = K.transpose

11: end for

12: Cf = Cost function(Tinit, P )

13: Tworld
camera= FminOptimiser(Cf, Tinit, P,K)

14: end procedure

3.1.4 Extrinsic Calibration Thermal camera

Thermal imaging has become a helpful and widely used tool for several control

tasks in industrial applications. The thermal image is often not sufficient to satisfy

large and complex inspection tasks and therefore can be used as a complementary

information, such as spatial information. Nowadays, thermal imaging provides rele-

vant data to perform specific robotic applications that require thermal information.

When combining two or more sources of acquisition, the resulting multi-sensor sys-

tem has to be extrinsically calibrated to find the relative pose between the adopted

sensors. This step can be performed by using a calibration target. In [24] and [25]

a thermal camera and a depth camera are calibrated by using a perforated grid

placed in front of the camera frames, close enough to the lenses and heated to be

distinguishable from both sensor images. However, the proposed solutions propose

the calibration approach with the only purpose of solving it, without a suitable con-

textualization or not considering the applicability at all in a specific scenario, basing

on fairly conservative assumptions.

The experimental setup of this work is shown Fig. 3.4 and consists of two cameras

rigidly attached together through two cross zip ties. They have been arranged in a

way that their optical axes are aligned. The adopted cameras have different field of

views (FOVs) and this implies that some depth pixels (Microsoft Kinect v1, Focal

length: 6.1 mm, FOV: 57°x45°, image size: 640x480) are outside the thermal image
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Figure 3.4: Perception system.

(Optris PI 450, Focal length: 15 mm, FOV: 38°x29°, Spectrum: 7.5 to 13 µm, image

size: 382x288) and they are not used in the merging step (Section 3.2.1). The

goal of the extrinsic calibration is to obtain an accurate identification of the camera

poses, which guarantee the minimum accuracy error when the two camera views are

merged. The extrinsic calibration of the thermal camera with respect to the depth

camera has been solved by using 3 spheres attached to a flat cardboard support. To

obtain an estimation of the transformation matrix T d
t , between the depth camera

frame Σd and the thermal camera frame Σt, the spheres have been moved inside

the collaborative workspace by placing the support in 10 configurations at distances

from the camera in the range where the human operator is expected to act during

the collaborative task. At every acquisition, the calibration target has been suitably

heated to be detectable from both cameras. The coordinates pd
k =

[
xdk ydk zdk

]T
of the kth center of the target sphere have been directly calculated from the depth

image, while the corresponding thermal point coordinates have been calculated from

the thermal image, assuming the distance from the lens equal to the depth value,

i.e., ztk = zdk and

xtk =
(ak − cxt)z

t
k

fxt

(3.7)

ytk =
(bk − cyt)ztk

fyt
, (3.8)
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where ak and bk are the pixel coordinates of the sphere center in the thermal image,

cxt , cyt are the pixel coordinates of the thermal image center and fxt , fyt are the

focal lengths expressed in pixel-related units. Finally, the transformation matrix T d
t

has been estimated by minimizing a cost function that combines the corresponding

data with a similar optimization Algorithm 1 of Sec. 3.1.3.

3.2 Depth-Thermal Image Fusion

The first requirement of a sensor fusion approach is to preserve all valid and useful

information from the sources to be combined, while not introducing distortions. For

the purpose of this work, the depth image and the corresponding thermal image

have been merged to provide an enhanced single view of a scene with extended

information content, through the mapping matrix of Sec. 3.2.1.

3.2.1 Mapping Process

The extrinsic calibrations explained in Sec. 3.1.3 allows to make correctly the map-

ping step, that means to find matches between the depth image and the thermal

image. Since the adopted cameras have different FOVs and resolutions, the resulting

map size must correspond to the smallest one. According to the experimental set-

up, the mapping step builds a 382x288 matrix because of the smallest dimensions

of the thermal image with respect to the depth image, as shown in Fig. 3.5.

The mapping step has been solved through a pixel-by-pixel procedure: the pixel of

the depth map, of indices [m,n], contains the depth value, zdm,n, which is acquired

to compute the corresponding Cartesian point coordinates P d
m,n = [xdm,n, y

d
m,n, z

d
m,n]

by using the following formulas:

xdm,n =
(m− cx) · zdm,n

fsx
(3.9)

ydm,n =
(n− cy) · zdm,n

fsy
(3.10)

where cx and cy are the pixel coordinates of the center (on the focal axis) in x and

y directions of the image plane, f is the focal length of the camera and sx and sy

are the dimensions of a pixel (in meters).

The Cartesian point is then expressed with reference to the thermal camera frame

through the relation:

P̃ t
m,n = T t

d · P̃ d
m,n = [xtm,n, y

t
m,n, z

t
m,n, 1] (3.11)



CHAPTER 3. SENSOR FUSION 28

Figure 3.5: Depth and thermal mapping.

from which P t
m,n is immediately obtained from the first three components of P̃ t

m,n.

Using the intrinsic parameters of the thermal camera, the corresponding pixel indices

of the point P t
m,n into the thermal map , [a, b], are finally computed: if they are

contained in the FOV of the thermal image, the corresponding depth pixel indices

[m,n] are written into the mapping matrix at the indices [a, b]; on the contrary, they

are discarded because they are outside the mapping image size. In other words, at

the end of the assessments, the resulting map contains the two sensor information

combined together for each corresponding pixel.

3.2.2 RGB Mapping Approach

Multi-modality sensor images can be combined through different image fusion tech-

niques which work at different merging levels: pixel-by-pixel, combining signals,

using relevant features or at symbol levels. This section provides an image fusion

algorithm which falls into pixel level but represents a novel approach with respect

to the most widely used pixel-level image fusion algorithms [27].

The proposed RGB Mapping Approach (RGB-MA consists of defining the inten-

sities of empty RGB channels. This is also because, from the best of our knowledge,

convolutional neural networks work better with RGB images. RGB-MA strength
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is that it assigns the same priority to the input sources. The result is no longer a

grayscale, as a depth image alone could be, or a withed average image which assigns

different priorities to the sources, but it is an RGB image where the depth data have

been mapped on the green channel and the temperature values have been mapped

on the red channel (see Fig. 3.6).

Figure 3.6: Depth and thermal mapping pipeline.

Specifically, the original depth sensor value, sd, and the corresponding temperature

sensor value, st, have been normalized into the interval [0, 1]. To do this, a min-

imum and a maximum variability ranges of the sources values have been defined:

they do not actually correspond to the ranges of the sensors technique specifications,

but they have been chosen according to the values detectable into the experimental

workspace. More in detail, the detectable depth values are included between 0.30 m

and 4.0 m, while the detectable temperature values are within the range [0− 50] °C,

which are suitable for any type of human detection tasks.

The color information inserted into the specific channel of the (i,j)-th pixel of the

output image must be mapped in 8 bits. The R value is computed acquiring sti,j

from the thermal image and applying the Eq. 3.12; the G value is computed acquir-

ing sdm,n from the depth image, where m and n are contained into the (i,j)-th value

of the mapping matrix (Sec. 3.2.1), and applying the Eq. 3.13; the B value of the

resulting image is always zero.

Ri,j = round

(
xt −mint

maxt −mint

)
· 255 (3.12)

Gi,j = round

(
xd −mind

maxd −mind

)
· 255 (3.13)
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Bi,j = 0 (3.14)

The result is shown in Fig. 3.7. Note that the proposed image fusion technique

leaves another channel that could be used for a further input source.

Figure 3.7: Depth and Themral sensor fusion images
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Convolutional Neural Network

Convolutional Neural Networks (ConvNets or CNNs) are a special type of neural

networks widely used for object classification and recognition. The effectiveness of

objects recognition in image recognition is one of the main reasons of their diffusion

in computer vision and in applications like self-driving cars, robotics and drones.

In general, the use of traditional Fully Connected networks (FC) for image processing

is not recommended for several reasons: FC layers do not exploit local structure

and for for large size images they have huge number of parameters. For example,

processing a 1000x1000x3 image with a FC network with 1000 layers, such layer has

∼ 3 billion weights and the problem becomes impractical.

Before CNN became popular, people used to extract features from images and then

feed them into some classification algorithm like SVM. CNNs networks automatically

extract these features from the images through convolutive operations and then use

a prediction layer at the end.

This concept was presented by Yann le cun in 1998 for digit classification. His work

is based on a single convolution layer. CNNs were then largely adopted by Alexnet in

2012 who used multiple convolutional layers to achieve state of the art on imagenet.

Figure 4.1: General model of a CNN.

31
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4.1 Convolution

Convolution is a mathematical operation on two functions to produce a third func-

tion that expresses how the shape of one is modified by the other. Intuitively, the

convolution of two functions represents the overlapping amount between the two

functions. The convolution of two functions f and w is defined as the integral of

the product of the two functions after one is reversed and shifted. As such, it is a

particular kind of integral transform:

f ∗ w =

∫ ∞
−∞

f(τ)w(t− τ)dτ (4.1)

In image processing, a kernel is a small matrix used for blurring, sharpening, em-

bossing, edge detection.

The function f is the input, w the kernel of the convolution. The general expression

of a convolution is:

g(x, y) = (w ∗ f)(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x− s, y − t) (4.2)

The operation of convolution between matrices, although it may seem similar, is

not a multiplication operation between matrices. The figure 4.2 shows a part of

the convolution operation between the matrix I representing the image and the K

matrix representing the kernel thus defined:

I =


1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

 K =

1 0 1

0 1 0

1 0 1



4.2 CNN layers

A ConvNet is a sequence of layers, Each layer processes its input data through a

differentiable function, to activate the next layer and pass it its processed data.

There are three types of ConvNet layer: Convolutional Layer, Pooling Layer, and

Fully-Connected Layer. Deciding the number of layers to use and the filter sizes

or other network parameters is not a trivial problem and there is not a a standard

tuning that is commonly used by researchers: the choice of the model of the network
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Figure 4.2: Matrix Convolution steps
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depends on the type of input data. Image size, image complexity and the type

of image processing task require a customized tuning of the network parameters.

Generally, the final set-up depends on the experimental results.

4.2.1 Convolutional Layer

The parameters of the Convolution Layer consist of a series of learning filters gen-

erally with a small height and width but with a depth equal to the depth of the

input volume. A typical filter can have dimensions 5x5x3 where 3 corresponds to the

depth ie the size of the three RGB channels of an image. The filter slides and con-

volves across the width and height of the input volume: this operation will produce

a 2-dimensional feature map that gives the responses of that filter at every spatial

position. For each convolutional layer there will be a series of different filters each

of those will produce a separate feature map; these activation maps will be stack

along the depth dimension to produce the output volume.

A specific parameter of convolution layer is the stride: it specifies how many pixels

we move at a time when we slide the filter on the image. For example when the

stride is 2 then the filters jump 2 pixels at a time as we slide them around and this

will produce smaller output volumes spatially.

Another important hyperparameter is the padding : sometimes it will be convenient

to pad the input volume with zeros around the border (Fig. 4.3). The feature of

zero padding is that it will allow us to control the spatial size of the output volumes

infact as we keep applying convolution layers, the size of the volume will decrease

faster than we would like. In the early layers of our network, we want to preserve

as much information about the original input volume so that we can extract those

low level features.

Generally, downstream of the convolution layer there is an activation function layer

for rectification which takes the feature map generated by the convolutional layer

and creates the activation map as its output. The rectified linear units (ReLUs)

are a special implementation that combines non-linearity and rectification layers in

convolutional neural networks and it is defined as:

f(x) = max(0, x) (4.3)

It has been demonstrated to enable better training of deeper networks compared to

the widely-used activation functions as the logistic sigmoid.
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Figure 4.3: Padding example

4.2.2 Pooling

Convolutional networks may include local or global pooling layers which combine

the outputs of neuron clusters at one layer into a single neuron in the next layer.

The main function of this layer is to reduce the spatial size of the representation to

reduce the amount of parameters and computation in the network. Pooling layer

downsamples the volume spatially using the MAX operation, independently in each

depth slice of the input volume as shown in figure (). In addition to max pooling,

the pooling units can also perform other functions, such as average pooling which

uses the average value from each of a cluster of neurons at the prior layer.

Figure 4.4: Pooling example

4.2.3 Fully-Connected Layer

The Fully Connected (FC) Layer is generally the last layer of a CNN. The output

of the last Pooling Layer will be the input to the FC layer. This layer is called
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Fully Connected because every node in the first layer is connected to every node in

the second layer. The output is the result of a classification based on the features

extracted by the previuos layer. FC layer is a traditional Neural Network containing

a softmax activation function which returns a value ranging from 0-1 for each of the

classification labels the model is trying to predict. Generally we can found one or

two FC layers.

4.3 CNN architecture

The CNN classic architectures follow general design guidelines which machine learn-

ing practitioners can adapt to solve various computer vision tasks as image classifi-

cation, object detection, image segmentation, and many other more advanced tasks.

The first CNN architecture model was developed by Yann Lecun in 1998 [28] to

identify handwritten digits. The current CNN architectures are inspired by the fist

one. The basic idea of this model is to operate multiple convolutions and pooling

and then transmitting the final signal via a fully-connected layer but due to the lack

of adequate computing power, it wasn’t possibleto extend this architecture to more

complex applications.

Figure 4.5: Lecun CNN

In 2012 Alex Krizhevsky presented AlexNet [29], an CNN architecture similar to

LeNet-5 but considerably larger. The introduced innovation is the Rectified Linear

Unit (ReLU) nonlinearity which permit a faster training. Furthermore, AlexNet

implements a dropout step that consists in setting to zero a predefined percentage

of layers parameters in order to limit the overfitting.

GoogleLeNet innovated the classic network architecture replacing the strategy of

alternating convolutional and pooling layers with stacked inception modules.
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Figure 4.6: AlexNet CNN

Adding more layers eventually had a negative effect on the final performance, this

phenomenon is known as degradation problem.The authors of the Deep Residual

Network ResNet [30] propose a remedy to this degradation problem by introducing

residual blocks in which intermediate layers of a block learn a residual function with

reference to the block input.

Starting from these networks, other models have been developed; they can be more

or less articulated but are based on the principles introduced by the classical network

just seen.
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Classification system

The traditional classification problem aims assigning a specific category to a new

instance on the basis of a training set and a previuos training process. In the field

of machine learning, classification is a supervised learning problem. More in detail,

each instance of the training dataset is correctly labeled with the corresponding cat-

egory. The algorithm that implements the classification problem is called Classifier

which map the input data into an output category. In this Chapter a novel method

for the image classification problem is decribed. After the definition of the suitable

categories, the instances contained into the input image are correctly labelled by the

classifier. This is not an easy problem to solve. The main difference between object

Figure 5.1: Classification example on the left and Detection example on the right

detection algorithms and classification algorithms is that the purpose of the object

38
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detection problem is to draw a bounding box around the identified object. On the

contrary the main objective of a common classification problem is to classifiy the

entire image in one category. This difference is shown clearly in image (Fig. 5.1).

5.1 Problem Description

The purpose of the developed classifier is to to identify human presence into the ob-

served scene. This means that twoclasses have been defined as the classifier output:

� Human presence, when there is at least one human operator into the observed

image frame

� Human absence, when there are no human operators into the observed image

frame

Unlike the classical image RGB classification problem, the input image for the devel-

oped classifer is obtained through the sensor fusion approach described in Sec. 3.2.1.

Starting from the mapping matrix, it is possible to provide two 382x288 matrices

(FoV of the thermal camera) which contain the temperature value (expressed in

°C) and the depth value (expressed in cm), respectively. The result is a 382x288x2

matrix consisting of two channels. These objects are the inputs of the developed

classifier and they are used to train the model and to predict the human presence.

The network model was created using the Keras framework: the network consists of

several convolution, pooling and activation layers (see Sec. 4.2) of the Relu and Sig-

moid functions (see Appendix B). The compilation was made by setting the type of

loss as categorical crossentropy indicated for classification problems and the training

was carried out by setting the GPU appropriately to reduce waiting times.

5.2 Training

There are different available data sets for training Keras classifiers. Most of them

contain RGB images which are then used to train the classifier. Since the case study

is based on two sensory information, the online available datasets were impossible to

use. Therefore, a new dataset has been acquired to build the classifier training set.

The original sensor data have been organized in matrices as described in Sec. 5.1.

The data matrices are provided by a ROS node which acquires the original depth

data and the original thermal data from the cameras and accumulates data into two

different matrices. A rosbag file is made to record these matrices. The acquired data
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correspond to both scenarios with and without human operators. Several human

configurations have been acquired to obtain a sufficient variability of the training

dataset. On the other hand, several objects have been introduced into the scene

without human operators in order to also have much more data representing ’Human

absence’ cases. Once the training data are recorded, they are processed through a

Matlab script which assigns the correct label to all the samples and transforms the

2-matrix objects into a format compatible with Keras. The result will consist of

two arrays: either n the number of samples of the dataset, an array nx288x382x2

(samples) and an array of length n (target).

5.3 Testing and Results

The trained network has been tested in different scenarios, at realtime. For each

input frame, the Keras classifier returns a value between 0 and 1 that represents the

probability of the human presence into the scene. More in detail, the temperature

image and the depth image are published at 30Hz into the ROS network. Therefore,

a pyton node reads these images and converts them into two matrices compatible

with the Keras format. Finally, the matrices are sent to the developed Keras clas-

sifier which predicts the presence/absence of human operators. A value thr is set

such that the values returned by the prediction are interpreted as follows:

float values;

float thr;

bool human_detected = true;

if(values > thr)

return not human_detected;

else

return human_detected;

The newtwork has been tested on a large variety of scenarios, including confusing

objects. The test results have been organized in the confusion matrix of Table 5.

Note that, unlike the classic RGB network that can confuse a plastic mannequine

objects with shape similar to humans, the proposed approach is able to correctly

distinguish only human operators thanks to the added thermal data (Fig. 5.2 and

Fig. 5.3).
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Figure 5.2: Human not detected from the developed image classificator

Figure 5.3: Human detected from the developed image classificator

Actual Class
Human Detected Human Not Detected Total

Predicted Class
Human Detected 71 13 84
Human Not Detected 11 65 76

Total 82 78 160

Table 5.1: Classification Confusion Matrix
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Detection system

Object detection is a computer technology related to computer vision and image

processing that deals with detecting instances of semantic objects of a certain class

(such as humans, buildings, or cars) in digital images and videos. Typically only a

small number of instances of the object are present in an image, but there is a very

large number of possible locations and scales at which they can occur.

Figure 6.1: Object Detection example

The purpose of the detection is more ambitious than the classification: in this case

the observed scene is not only classified as belonging to a certain category but the

objective is to obtain the coordinates of the bounding boxes around each detected

object must be predicted. The coordinates returned from the detector can be used

for different goals and in different areas. Generally these systems can be used in the

automotive field to allow the assisted driving: in this case the object to be recog-

nized can be the pedestrian, road signs, probable obstacles, size of the road.

42
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Nowadays there are many architectures and framework with a pre-trained CNN

that allows to recognize some categories of objects and these networks are generally

trained on the RGB images, so they can be used just on the traditional RGB cam-

eras.

The new multi-sensor proposed approach aims at classifying and detecting the hu-

mans in the scene starting from a different type of images generated by thermal and

depth sources. The performance of this CNN trained on a fusion of thermal and

depth sources are then compared with the common pre-trained RGB models and

with others CNNs trained only on the depth or on the temperature source.

6.1 Problem description

YOLO is the software which was adopted to develop a novel human detection system

based on the multimodal sensory data. More in detail, YOLO is an open source

neural network framework written in C and CUDA that supports CPU and GPU

libraries and it is fully compatible with ROS environment. In this way it is possible to

launch YOLO indicating the ROS topic to read (for example /camera/rgb/image),

the model used (yolov1, yolov2, tiny-yolov2 etc.) and the trained weights. In general,

YOLO is trained by using RGB images and there are many pre-trained weights

(available online) to test the detection on the topic of the RGB camera. Since we

want to use the multimodal perception system and the sensor fused images, there

are no existing YOLO pre-trained networks so the YOLOv3 CNN model has been

re-trained to adapt the detection system to the Depth-Thermal (D-T) images. The

following steps have been executed:

� definition of a Human class ;

� exclusion of the YOLOv3 pre-trained classes from the prediction;

� building of the training data-set acquiring frames from D-T video stream;

� manual labelling of each frame;

� retrain of the YOLOv3 CNN weights.

6.2 Training

The training dataset is composed by a set of properly labeled images. Yolo re-

quires that for each image (image name.jpg) there is a corresponding text file (im-

age name.txt) which contains the information of the category of the detected objects
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Figure 6.2: Yolov3 CNN Model

(the label manually added) and the coordinates of the (manually drawn) bounding

boxes. The images have been saved starting from the specific video stream and from

a Python program that automatically saves the frames with a 2Hz frequency. Once

the images have been saved, YOLO-Annotation-Tool (Fig. 6.3) has been used to

label the images: the tool allows to draw the box around the object belonging to

a specific class and automatically generates a file containing the information of the

box and the class of the object. The tool generates text files with labeling infor-

mation according to a format different from that required by Darknet for training;

then another Python program is used to convert it to Yolo format.

Yolo-Annotation-Tool format:

<category number><bounding box left X><bounding box top Y>

<bounding box right X><bounding box bottom Y>

Darknet Yolo format:

<object-class> <x> <y> <width> <height>

Labeling is the longest time consuming operation of building a dataset infact it has

been spent about one hour to label thousand images. Once the dataset has been

built the train.txt and test.txt files containing the train and test images are listed
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with the corresponding paths through a Python program and these files are finally

sent to Yolo.

Before starting the training process, the following files must also be configured:

� cfg/obj.data This file specifies the number of classes to train, the path of the

train.txt and test.txt files.

� cfg/obj.names This file lists the names of the categories for which we want

to train. Every new category should be on a new line, its line number should

match the category number in the .txt label files we created. In our case study

the only defined category is HUMAN.

� cfg/yolov3.cfg The convolutional neural network model is defined in the .cfg

file. Yolov3 (Appendix C) was used as a model whose batch size and sub-

division parameters were modified. The batch size indicates the number of

images used for each training step while the subdivision indicates the number

according to which the batch will be divided to decrease GPU VRAM require-

ments. If you have a powerful GPU with loads of VRAM, this number could

be increased.

Figure 6.3: YOLO-Annotation-Tool in labeling operation

The training is performed on the Titan V GPU as the process is up to ten times

faster than using CPU. The training goes on without ever stopping and saving the

trained weights every hundred iterations in a backup file. During the training step,

the framework publishes several parameters on the basis of which the user can decide

whether or not to stop it. The published parameters are as follows:
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� Region Avg IOU is the average of the IOU of every image in the current

subdivision. IOU is a metric described in detail in Sec. 6.3. At 100% we have

a perfect overlap of our bounding box and the target but we could probably

have overfitted the data. A good value to stop the training is around 80%.

� Avg Recall is defined in code as recall/count, and thus a metric for how many

positives Yolo detected out of the total amount of positives in this subdivision.

� Count is the amount of positives (objects to be detected) present in the current

subdivision of images

� Obj is the average confidence score on those grids where there is an object

� No Obj is the average confidence score for the locations where there’s no object.

6.3 Testing and Results

Metrics description

In general, each model is judged based on its performance on a data set, usually

called the ”validation / test” data set. This performance is measured using various

statistics as accuracy, precision, recall. The use of one metric rather than another

depends on the type of application in particular and in this case the Mean Aver-

age Precision (maP) has been adopted. Unlike classification problems for which

simpler precision and recall metrics are indicated, for algorithms that solve object

detection problems predicting the location of the object along with the classes, the

Mean Average Precision is particularly used. The calculation of mAP is based on

the calculation of various metrics such as precision, recall and IoU.

IoU (Intersection over union) is a metric to determine how accurately the model has

detected a certain object. Computing the IoU consists in the division of the area of

overlap between the bounding boxes by the area of union (see Fig. 6.4): we have ”a

match” when they share the same label and an IoU > = 0.5.

Precision (also called positive predictive value) is the fraction of relevant instances

among the retrieved instances, while recall (also known as sensitivity) is the frac-

tion of relevant instances that have been retrieved over the total amount of relevant

instances.

The idea of mAP is conceptually similar in finding the area under the precision-recall

graph replacing the precision value with the maximum precision for any recall.
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Figure 6.4: IoU calculation

Since the mAP does not take false positives and negatives into account, the per-

centage of the false detected was estimated as an additional metric.

Experimental Results

To test the performance of the Sensor Fusion approach, two others CNNs have

been trained based on the depth and temperature information respectively. The

networks have been trained and tested with the same input data set which differ

only according to the source used.

Comparing the results of the Tab. 6.1 we can see that in the DT approach the mAP

has a value comparable to that of the other approaches. However, the percentage of

false positives is considerably lower than the others. In all cases the percentage of

false negatives remains low.

The high percentage of false positives of single-source approaches is to be found in

cases where hot objects (T based) or objects with shapes comparable to human ones

(D based) can be exchanged as human (Fig. 6.5).

Note that even using pre-trained weights on the RGB camera, there are many false

positives due to objects similar to human shapes and which make the classic RGB

approach unusable in specific environments.

The CNN based on DT fusion can detect any human not often incurring false and

negative positives and with good accuracy with a training dataset of only 1000

samples.

As shown in Fig. 6.6, in the case of the Sensor Fusion there is a good overlap

between the predicted and the ground truth boxes and also both the hot robot and

the presence of the dummy do not cause false positives.
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Figure 6.5: Two cases of human false positives: on the right a dummy detected
in depth approach while on the left the hot moving robot detected in temperature
approach.

Approach mAP % False Positives % False Negatives %
Depth 65.09 26.87 17.53
Thermal 62.76 64.35 4.37
DT fusion 50.54 7.47 11.85

Table 6.1: CNNs Testing Results

Figure 6.6: Ground-truth and predicted boxes overlapping in Sensor Fusion based
application
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Application

There are many application where human detection CNN can be applied as surveil-

lance systems or to improve safety systems. In this case the application consists

to robustly detect human operators in collaborative robot work cells through the

multimodal perception system. Starting from the human detection, the system com-

putes the separation distance between the robot and the operator and follows the

line of the current regulations assuring the operators safety through the robot speed

adjustment.

7.1 Segmentation

The basic assumption of the proposed segmentation algorithm (Fig. 7.1) is to process

exclusively the information related to the dynamic objects present into the observed

scene. This is because every point-cloud based strategy always represents a compu-

tationally heavy operation, then a Background Segmentation step has been initially

developed to subtract the static environment. The cameras monitor the surround-

ings of the manipulator and the robot kinematic chain is fully visible. While the

collaborative workspace is observed, the robot executes its task, thus becoming a

dynamic entity. Therefore, the package Real-time URDF Filter [31] has been in-

tegrated at the beginning of the pipeline to distinguish the depth pixels belong to

the robot model with respect to those belong to other dynamic entities and assign

them a Not-a-Number (NaN) value. The background filtering has been developed

through an efficient algorithm that performs the subtraction of a stored background,

at pixel level: 50 frames of the static background are initially captured and the mean

value of each pixel is stored in a memory area. At every acquisition, the current

frame subtracts the static frame. The depth image is then converted to PCD and

a uniform sampling filter can be applied to make the algorithm more reactive, by
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selecting the clouds density.

Figure 7.1: Segmentation Algorithm pipeline

Finally, the detection of dynamic entities is executed through a PCD Clustering step,

which processes the point-cloud scene and provides some clusters as many as single

dynamic areas are detected in the foreground. The Euclidean cluster extraction

method is performed to distinguish all the clusters into the collaborative workspace.

To compensate the sensors measurement noise that could sometimes provide false

clusters, a first constraint is made by the definition of a minimum cardinality that

the areas in the foreground should have, to be large enough to represent a human

entity.

7.2 Human detection and cluster validation check

When a human is detected, the CNN returns the predicted bounding boxes that will

be send to the segmentation pipeline to verify the human validation of each cluster

generated in Sec. 7.1: each point of the cluster is transformed into depth pixel

coordinates (by inverting Eq. 3.9-3.10). Since the bounding box is expressed in the

thermal image plane, the selected pixel is converted into depth image coordinates

through the mapping matrix (Sec. 3.2.1). If at least 50% of the cluster points belong

to a bounding box, the cluster is labeled as human and passes the check. Figure 7.2

shows two clusters: the red human operator which is correctly detected by the CNN

and the yellow plastic mannequin which is correctly not labeled as human.

Human Validation check is a fundamental step to compute the correct separation

distance between human operators and the robot to apply the actual regulations of

industrial robotic applications.

7.3 Separation distance computation

Therefore, the last one step of the segmentation pipeline (Fig. 7.2) identifies the

nearest pair of points, one belong to the robot (PR) and the other one belong to the
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Figure 7.2: Human validation pipeline

operator (PH), that minimizes the distance, i.e.,

PH ∈ H, PR ∈ R | d(PH , PR) ≤ d(P ′H , P
′
R)

∀P ′H ∈ H, P ′R ∈ R
, (7.1)

where d(·, ·) is the Euclidean distance between two points, H and R represent the

set of all points that belong to the operator and the robot, respectively. Moreover,

alongside the HDT strategy, a robot modeling method has been implemented. The

SoA assumptions factor only a singular representative coordinate of the robot (e.g.,

the end effector) or report its pose only in terms of either joint configurations or in

terms of the Cartesian pose of the kinematic frames. Thus, they do not take into

account the link volumes but only specific points. On the contrary, the proposed so-

lution considers the entire robot volume. Primitive shapes, e.g., ellipses and spheres

as in [32] and [33], have been used to model robot links.

The kinematic chain has been padded through dummy frames to protect the robot

homogeneously, and creating a virtual 0.10 m diameter security sphere around each

frame (compatible with the used robot). Made these assumptions, the pair of closest

points can be immediately identified (Eq. 7.1): the algorithm calculates the distance
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Figure 7.3: Identification of the minimum distance points between the whole robot
and the closest human operator.

between all points of the verified clusters and the point origin of every robot frame.

The robot point, PR, will be on the virtual sphere around the identified frame. This

step strongly justifies the choice of a point cloud based approach. In fact, it provides

satisfactory accuracy and precision: it allows tracking humans also when they are not

completely visible from the camera view, unlike common skeleton-based techniques;

it is not necessary that human operators are in front of the camera view because the

point cloud will recognize them anyway; the approach identifies more detailed body

parts, e.g. a elbow, the head, an hand, the chin or the chest. Figure 7.3 shows the

results: the developed CNN distinguishes human operators belong to the Human

class (in red) from other clustered objects (in yellow), i.e. a plastic mannequin and

a chair, which are not labeled as humans and they are not considered for the safety

separation distance computation, even if they are possibly closer to the robot. Note

that the closest human cluster is indirectly selected in multi-humans scenarios.
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Conclusion

This work is aimed at finding a robust solution to the human detection problem.

The applicability of the novel approach is concerned to collaborative workspace,

where the human operator safety is the main objective. The power of this approach

lies in the sensor fusion and the thermal camera integration into the perception

system. The extrinsic calibration algorithm between the thermal camera and depth

camera has been developed to obtain a sufficient accuracy when overlapping the two

images. This is an advanced sensor fusion strategy which performs two classic Ma-

chine Learning problems: Image Classification and Object Detection. The trained

CNNs have returned excellent results despite the small number of samples in the

training dataset. The most time consuming step has been the acquisition of the new

dataset and the manual labeling of images to accurately train the network.

It has been shown that through this network it is possible to distinguish the cases of

the presence of a mannequin or shapes similar to human body with respect to the

real human one. This feature makes the network usable for different purposes such

as video surveillance or how it has been analyzed in detail, allowing cooperation be-

tween human and robot in work cells. In particular, in addition to the application

in industrial areas, if we think of a collaboration between human and robot in a

clothing store where there are operators, mannequins, clothes and many forms that

recall the human features, this algorithm could have robust results.

As possible future developments, the performance of the sensor fusion algorithm

could be improved by increasing the frequency of publication of the merged image

video stream. To increase the frequency of publication, the Sensor Fusion algorithm,

then the Mapping algorithm could be rewritten in CUDA for some instructions and

then run on the GPU significantly increasing the performance.

In addition, the networks trained on a thousand samples could significantly increase
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the performance for human detection by increasing the number of samples of the

training dataset and doing the network retraining.

Going in the specific application for human-robot collaboration (Sec. 7.2), possible

improvements could be to increase the spatial coverage of the detection by installing

a greater number of depth and thermal cameras with different angles and FoV. In

addition, the Sensor Fusion could be extended by merging the use and fusion of

other types of sensors into the vision system.

It would then be interesting for the application not only to carry out the human

detection but also to make a prediction on the type of task or action of the human

starting from his movements. Predicting a certain human behavior could favor the

algorithms development that safeguard the security and that helps humans in work

or daily activities.
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Depth Intrisic Calibration .yaml file

image_width: 640

image_height: 488

camera_name: depth_A00362907668053A

camera_matrix:

rows: 3

cols: 3

data: [587.0563067729362, 0, 320.6153422514201,

0, 590.2429336923416, 250.4053454922714,

0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.2248186612495552, 0.4608152675220439,

-0.009977982350402648, 0.0125772926680182, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [588.2620239257812, 0, 326.7864095571531, 0,

0, 592.9213256835938, 245.3447312767712, 0,

0, 0, 1, 0]
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Keras Classificator Model

model = Sequential()

model.add(Conv2D(32, (5, 5), strides=(1, 1),

input_shape=(288, 382, 2)))

model.add(Activation(’relu’))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Conv2D(64, (3, 3)))

model.add(Activation(’relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.50))

model.add(Conv2D(64, (3, 3)))

model.add(Activation(’relu’))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Dropout(0.50))

# this converts our 3D feature maps to 1D feature vectors

model.add(Flatten())

model.add(Dense(2))

model.add(Dropout(0.5))

model.add(Activation(’sigmoid’))

# COMPILE

model.compile(loss=’categorical_crossentropy’,

optimizer=’rmsprop’,

metrics=[’accuracy’])
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with tf.device(’/device:GPU:0’):

model.fit(x_train, y_train,

batch_size=BATCH_SIZE,

epochs=EPOCHS,

#verbose=1,

#validation_data=(x_test, y_test)

)

score = model.evaluate(x_test, y_test)
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Yolo v3 Model

[net]

batch=64

subdivisions=8

width=382

height=288

channels=3

momentum=0.9

decay=0.0005

angle=0

saturation = 1.5

exposure = 1.5

hue=.1

learning_rate=0.001

max_batches = 20000

policy=steps

steps=-1,100,20000,30000

scales=.1,10,.1,.1

[convolutional]

batch_normalize=1

filters=16

size=3

stride=1

pad=1

activation=leaky
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[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=32

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=64

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[maxpool]
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size=2

stride=2

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=1

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1



CHAPTER 8. CONCLUSION 61

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=30

activation=linear

[region]

anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52

bias_match=1

classes=1

coords=4

num=5

softmax=1

jitter=.2

rescore=1

object_scale=5

noobject_scale=1

class_scale=1

coord_scale=1

absolute=1

thresh = .6

random=1
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