
ABSTRACT

The force/torque sensor is an important tool that gives to the robots the ability

to interact with the environments. Calibration is essential for these sensors to

convert the raw sensor values to accurate forces and torques measurements.

However, in practice, the calibration of multi-axis force/torque sensor requires

complex multi-step data processing, due to the coupling effects and nonlinearity

of the sensors. Moreover, accuracy cannot be guaranteed. To solve this problem,

various Machine Learning and Deep Learning approaches have been used and

compared in terms of accuracy, rate and number of parameters.

ABSTRACT

Un sensore di forza/coppia è un importante strumento che fornisce al robot

l’abilità di interagire con l’ambiente in cui sono immersi. La calibrazione è

essenziale per questi sensori per convertire i valori grezzi in misure accurate di

forze e coppie. Tuttavia, in pratica, il sensore di forza/coppia multi-asse necessita

di un complesso processamento multi-step, a causa degli effetti accoppiamento e

non linearità dei sensori. Inoltre, l’accuratezza non può essere garantita. Per

risolvere questo problema, diversi algoritmi di Machine Learning e Deep Learning

sono stati impiegati e confrontati in termini di accuratezza, frequenza, e numero

di parametri.

Contents

Chapter 1 Introduction .. 1

1.1 Problem Description ... 1

1.2 Outline ... 2

Chapter 2 Force Sensors .. 4

2.1 Strain Gauge .. 4

2.2 Shaft torque sensor ... 5

2.3 Wrist force sensor ... 6

2.4 SunTouch ... 8

2.4.1 Working principle .. 9

2.5 Technical Features ... 10

2.6 Characteristics of the deformable pad .. 12

2.7 Integration of the sensor in a commercial gripper 14

Chapter 3 Dataset for Calibration ... 16

3.1 Training Set Construction .. 17

3.2 Training set Preprocessing ... 21

3.2.1 Training set decimation ... 22

3.2.2 PCA ... 23

3.2.3 Traning Set Reduction using PCA .. 32

Chapter 4 Machine Learning Algorithms ... 33

4.1 What is Machine Learning?.. 33

4.2 Machine Learning Training Setup .. 36

4.3 Decision Tree for Regression .. 37

4.3.1 Regression Tree Example ... 40

4.3.2 Stopping Criteria ... 42

4.3.3 Overfitting ... 42

4.3.4 Regression Tree Pros and Cons ... 44

4.4 K-NN .. 44

4.4.1 Knn Pros and Cons.. 46

4.4.2 K-NN Example .. 46

4.4.3 Nearest Neighbours Algorithm ... 49

4.4.4 K-NN Calibration Results .. 50

4.5 Boosting and Bagging ... 52

4.5.1 What is a weak learner? .. 52

4.5.2 What is an ensemble method? ... 52

4.5.3 How do Bagging and Boosting get N learners? 53

4.5.4 Why are the data elements weighted? ... 53

4.5.5 How does the prediction stage work? ... 54

4.5.6 Bagging and boosting comparison .. 55

4.6 Random Forest ... 56

4.6.1 Out-of-Bag error .. 57

4.6.2 Important Hyperparameters .. 58

4.6.3 Pros and Cons ... 59

4.6.4 Random Forest Calibration Results ... 59

4.7 AdaBoost.. 62

4.7.1 Adaboost Loss functions .. 64

4.7.2 Weighted Median ... 65

4.7.3 Adaboost Pros and Cons ... 66

4.7.4 Adaboost Calibration Results .. 66

Chapter 5 Gaussian Process.. 70

5.1 Gaussian Distribution and properties ... 70

5.1.1 Sum of Gaussians... 71

5.1.2 Scaling a Gaussian ... 72

5.1.3 Prior Distribution .. 72

5.1.4 Posterior Distribution .. 73

5.1.5 Multivariate Gaussian.. 74

5.2 Gaussian Process from different views .. 75

5.2.1 Weight Space view ... 75

5.3 Function Space view... 78

5.3.1 Prediction with Noise-free Observations .. 80

5.3.2 Prediction using Noisy Observations ... 81

5.4 Varying the Hyperparameters .. 83

5.5 Covariance Functions ... 84

5.6 Model Selection .. 88

5.6.1 Marginal Likelihood ... 90

5.7 Gaussian Processes Calibration Results.. 92

Chapter 6 Deep Learning .. 98

6.1 Machine Learning vs Deep Learning .. 99

6.2 Neural Networks Structure ... 101

6.3 Activation Function ... 102

6.4 Feedforward Neural Network ... 103

6.5 The Back-Propagation Algorithm .. 104

6.6 Optimization Algorithms .. 106

6.6.1 Gradient Descent ... 106

6.6.2 Stochastic Gradient Descent (SGD) .. 107

6.6.3 Gradient Descent with Momentum .. 108

6.6.4 Root Mean Squared Prop (RMSProp) ... 109

6.6.5 Adaptive Moment Estimation (Adam) .. 109

6.7 Loss Functions ... 110

6.8 Regularization Technique ... 111

6.9 Hyperparameters optimization ... 115

6.10 Weights initialization ... 116

6.11 Neural Network Calibration ... 119

Chapter 7 Conclusions ... 123

7.1 Future Improvements ... 125

 1

Chapter 1 Introduction

1.1 Problem Description

Service robots are entering our daily and this will become more pervasive in the

near future. Many roboticist emphasize the need of service robotics concerning

the elderly population in Europe, Japan and USA. They think that machines

equipped with physical and cognitive capabilities could take care of people

physically and cognitively limited or disabled. Robots have shown to be capable

of autonomous driving in environments of different complexities and constraints.

Concerning household scenarios, robots already clean apartments. Other tasks as

folding towels, preparing pancakes, or clear a table have been demonstrated on

research platforms.

Figure 1(A) Robot folding towels. (B) Vacuum-cleaner

However, to let the robots perform these tasks in unstructured and open-ended

environments, despite unexpected events and uncertainty in perception and

execution, is matter of research effort and there are still many open problems that

need to be solved. Service robots of new generation will interact with objects of

different weights, dimension and shape and tasks, and they will need to be capable

of adapting the grasp configuration to any kind of object, avoiding its slippage

even in presence of external disturbances applied to the object. Such capability

requires the ability to modulate the grasp force to allow the robot to manipulate

both rigid objects and deformable or fragile ones that have to be grasped with the

 2

minimum force required to hold them without causing excessive deformation or

breakage. In order to regulate the grasp force, the measurements of contact forces

and moments as well as contact locations at each finger so that external and

internal forces can be estimated.

Force and torque sensors are widely used in robotic manipulation. The sensor

used in this thesis is a 6-axis force/torque sensor based on optoelectronic

technology. Force/Torque sensor calibration is the process of mapping raw voltage

data to force and torque wrench. In recent years, deep-learning has been actively

studied in the field of computer science. The powerful characteristics of deep

learning algorithms is that learning is possible by training single DNN model

including a nonlinear activation function. The purpose of this thesis is to compare

DNN (Deep Neural Network) with various Machine Learning algorithms in terms

of prediction accuracy, prediction rate and number of parameters to tune.

1.2 Outline

The thesis is structured as follows:

 Chapter 2 – Force Sensors

Chapter 2 introduces force sensors, their structure, their working principle.

Then SunTouch tactile sensor is described.

Figure 2 Robot grasping fragile object

 3

 Chapter 3 – Dataset for Calibration

Chapter 3 focuses on the construction of training set and its pre-processing

using PCA and decimation.

 Chapter 4 – Machine Learning Algorithms

Chapter 4 describes several Machine Learning algorithms like Regression

Trees, KNN, AdaBoost, Random Forest, showing their results.

 Chapter 5 – Gaussian Processes for Regression

Chapter 5 illustrates Gaussian Processes, how they works and how the

prediction step works. Finally, simulation results are shown.

 Chapter 6 – Deep Learning Algorithms

Chapter 6 introduces Neural Networks, its structure, training using

backpropagation and regularization to obtain better testing error. In the

end, results of different Neural Networks structure are shown.

 Chapter 7 – Conclusion

Chapter 7 highlights the differences between different algorithms, their

limitations and their strength. Therefore, some future development are

introduced.

 4

Chapter 2 Force Sensors

Measurement of a force or torque is usually reduced to measurement of the strain

induced by the force (torque) applied to an extensible element of suitable

features. Therefore, an indirect measurement of force is obtained by means of

measurements of small displacements. The basic component of a force sensor is

the strain gauge that uses the change of electric resistance of a wire under strain.

2.1 Strain Gauge

A strain gauge takes advantage of the physical property of electrical conductance

and its dependence on the conductor's geometry. When an electrical conductor is

stretched within the limits of its elasticity such that it does not break or

permanently deform, it will become narrower and longer, which increases its

electrical resistance end-to-end. Conversely, when a conductor is compressed such

that it does not buckle, it will broaden and shorten, which decreases its electrical

resistance end-to-end. From the measured electrical resistance of the strain gauge,

the amount of induced stress may be inferred.

Figure 3 Visualization of the working concept behind the strain gauge on a beam under exaggerated

bending.

 5

The strain gauge is chosen in such a way that the resistance �� changes linearly

in the range of admissible strain for the extensible element. To transform changes

of resistance into an electric signal, the strain gauge is inserted in one arm of a

Wheatstone bridge, which is balanced in the absence of stress on the strain

gauge itself. From Fig.4 it can be understood that the voltage balance in the

bridge is described by:

�� � � ���� 	 �
 � ���� 	 �� ��

If temperature variations occur, the wire changes its dimension without

application of any external stress. To reduce the effect of temperature variations

on the measurement output, it is worth inserting another strain gauge in an

adjacent arm of the bridge, which is glued on a portion of the extensible element

not subject to strain. Finally, to increase bridge sensitivity, two strain gauges may

be used which have to be glued on the extensible element in such a way that one

strain gauge is subject to traction and the other to compression; the two strain

gauges then have to be inserted in two adjacent arms of the bridge.

2.2 Shaft torque sensor

In order to employ a servomotor as a torque-controlled generator, an indirect

measurement of the driving torque is typically used, e.g., through the

measurement of armature current in a permanent-magnet DC servomotor. If it is

desired to guarantee insensitivity to change of parameters relating torque to the

measured physical quantities, it is necessary to resort to a direct torque

Figure 4 Wheatstone bridge

 6

measurement. The torque delivered by the servomotor to the joint can be

measured by strain gauges mounted on an extensible apparatus interposed

between the motor and the joint, e.g., a hollow shafting. Such apparatus must

have low torsional stiffness and high bending stiffness, and it must ensure a

proportional relationship between the applied torque and the induced strain. The

measured torque is that delivered by the servomotor to the joint, and thus it does

not coincide with the driving torque. This measurement does not account for the

inertial and friction torque contributions as well as for the transmission located

upstream of the measurement point.

2.3 Wrist force sensor

When the manipulator’s end-effector is in contact with the working environment,

the force sensor allows the measurement of the three components of a force and

the three components of a moment with respect to a frame attached to it. As

illustrated in Fig. 5, the sensor is employed as a connecting apparatus at the wrist

between the outer link of the manipulator and the end-effector. The connection

is made by means of a suitable number of extensible elements subject to strain

under the action of a force and a moment. Strain gauges are glued on each

element, which provide strain measurements.

 Figure 5 Use of a force sensor on the outer link of a manipulator

 7

The elements have to be disposed in a keen way so that at least one element is

appreciably deformed for any possible orientation of forces and moments.

Furthermore, the single force component with respect to the frame attached to

the sensor should induce the least possible number of deformations, so as to obtain

good structural decoupling of force components. Since a complete decoupling

cannot be achieved, the number of significant deformations to reconstruct the six

components of the force and moment vector is greater than six. A typical force

sensor is that where the extensible elements are disposed as in a Maltese cross;

this is schematically indicated in Fig. 6. The elements connecting the outer link

with the end-effector are four bars with a rectangular parallelepiped shape. On

the opposite sides of each bar, a pair of strain gauges is glued that constitute two

arms of a Wheatstone bridge; there is a total of eight bridges and thus the

possibility of measuring eight strains.

The matrix relating strain measurements to the force components expressed in a

Frame � attached to the sensor is termed sensor calibration matrix. Let ��,
for � � 1, … , 8, denote the outputs of the eight bridges providing measurement

of the strains induced by the applied forces on the bars according to the direction

Figure 6 Schematic representation of a Maltese-cross force sensor

 8

specified in figure to the directions specified in Fig. 6. Then, the calibration matrix

is given by the transformation:

⎣⎢
⎢⎢
⎢⎢
⎡������������������ ⎦⎥

⎥⎥
⎥⎥
⎤

�
⎣⎢
⎢⎢
⎢⎡

0#�
000#$

00#�0#%�0

#
0000#$

00#&#&&00

0#�%000#$%

00#$0#%$0

#
'0000#$'

00#(#&(00 ⎦⎥
⎥⎥
⎥⎤

⎣⎢
⎢⎢
⎢⎢
⎡�
����&�%�$�'�(⎦⎥

⎥⎥
⎥⎥
⎤

Finally, it is worth noticing that force sensor measurements cannot be directly

used by a force/motion control algorithm, since they describe the equivalent forces

acting on the sensors which differ from the forces applied to the manipulator’s

end-effector (Fig. 6). It is therefore necessary to transform those forces from the

sensor Frame � into the constraint Frame #

)�**�**+ �) ��* 0,-.*�* /��* ��*+)������+
which requires knowledge of the position .*�* of the origin of Frame � with respect

to Frame # as well as of the orientation ��* of Frame � with respect to Frame #.

Both such quantities are expressed in Frame #, and thus they are constant only

if the end-effector is still, once contact has been achieved.

2.4 SunTouch

The sensor is based on the use of optoelectronic technologies and it aims to

overcome difficulty of the integration into small spaces, high costs, repeatability

and complex conditioning electronics. The sensor has different capabilities, i.e. it

can measure the six components of the force and torque vectors applied to it, and

it can be used as a tactile sensor providing a spatial and geometrical information

about the contact with a stiff external object. A deformable elastic layer is

 9

positioned above a matrix of sensible points (the taxels) to transduce the force

and torque vectors into deformations, which are then measured, by the sensible

points. Furthermore, the signals provided by the taxels, which are spatially

distributed below the deformable layer, constitute a spatially distributed

information that will also allow to estimate the size and orientation of the

contact surface between the external surface of the sensor and the objects in

contact with it. The contemporary knowledge of all this information is essential

for a use of the sensor in robotic applications where objects of different size and

dimension have to be manipulated by robotic hands.

2.4.1 Working principle

The tactile sensor basic idea is to use a deformable layer positioned above a

discrete number of sensible points (called “taxels”), in order to transduce the

external force and moment, applied to the sensor, into deformations, which are

measured by the taxels. The taxels, spatially distributed below the deformable

layer, provide a set of signals corresponding to a distributed information (called

“tactile map”) about the sensor deformations. Practically, the deformable layer

transduces an external force and/or torque into a deformation of its bottom facet

through its stiffness. An external force applied to the deformable layer produces

local variations of the bottom surface of the elastic material and the couples of

optical devices measure the deformations in a discrete number of points. In

particular, these deformations produce a variation of the reflected light intensity

and, accordingly, of the photo-current flowing into the photo-detector. The

deformations can be positive or negative, i.e. the photo-current can locally

increase or decrease depending on amplitudes of tangential and normal force

components, as well as on torque components. The position of the 0 � 1ℎ taxel

can be identified with the (34, 54) coordinates of the centre position of the taxel.

Denoting with 64 the voltage variation of the 0 � 1ℎ taxel, 64 > 0 denotes an

 10

increasing distance (and then a decreasing photo-current), while 64 < 0 denotes

a decreasing distance (and then an increasing photo-current) between the

reflecting surface and the electronic layer (obviously 64 � 0 denotes no variation).

The whole tactile map allows, after a calibration procedure, to estimate contact

force and moment together with information about the orientation of the contact

surface and object properties. The taxels have been developed by using

optoelectronic technology, and in particular each sensing point is constituted by

an emitter and a receiver, mounted side by side, working in reflection mode. The

soft pad has been realized by using the silicone molding technology with the molds

made with a high resolution 3D printing manufacturing process.

2.5 Technical Features

The sensor is mainly constituted by three components: a Printed Circuit Board

(PCB), a rigid grid and a deformable cap. For each, the emitter/receiver couple

is constituted by a unique optoelectronic component: a Surface Mount Technology

(SMT) photo-reflector. In particular, the optoelectronic section of the PCB

integrates 25 taxels, organized in a 5 × 5 matrix. For each taxel, the conditioning

electronics is constituted by two resistors: one to drive the LED and a second to

Figure 7 Sketch of the working principle.

 11

transduce the photocurrent measured by the PT into a voltage directly

compatible with an Analog-to-Digital (A/D) converter. The same 12-bit A/D

converters (manufactured by Analog Devices) with 16 channels and a Serial

Peripheral Interface (SPI), used in previous works, has been integrated in the

PCB design. In particular, an interfacing section constituted by the

microcontroller PIC16F1824, manufactured by Microchip Technology, has been

added on a separate rigid board, connected to the previous described part via a

flexible section. The integration of the microcontroller allows to obtain a fully

integrated sensor with a programmable device used to interrogate the sensor via

a standard serial interface already available in most commercial grippers. The

board is completed by a standard low-noise voltage regulator with an input

voltage range up to 12 V (typical range of supply voltage available on commercial

grippers) and an output voltage equal to 3.3 V to supply the whole PCB.

Figure 8 The tactile sensor PCB: layout with dimensions a top view

Figure 9 The tactile sensor PCB: layout with dimensions: a bottom view

 12

2.6 Characteristics of the deformable pad

A mechanical structure constituted by the deformable layer and the rigid grid is

connected above the PCB. The deformable layer is mainly made of white silicone

with a domed top side and a square base, as shown by the picture in Fig.10(a).

(a) (b)

(c) (d)

The mechanical properties of the silicone determine the full-scale and the

sensitivity of the sensor. This prototype uses a shore hardness of 26 A. When

external forces and/or moments are applied to the deformable layer, they produce

vertical displacements of the white ceilings for all cells. The distances between the

top of photo-reflectors and the white surfaces change, by producing variations of

the reflected light and, accordingly, of the voltage signals measured by the PTs.

The addition of the third component (i.e., the rigid grid) became necessary due

to the electromechanical characteristic of the optical components. In particular,

photo-reflector has a non-monotonic characteristic (see Fig. 11), which relates

Figure 10 Pictures of deformable layer and rigid grid

 13

the measured voltage to the distance of a reflecting surface positioned in front of

the component.

As a consequence, the rigid grid has to ensure that the reflecting surface never

reaches distances from the component that fall into the non-monotonic area,

highlighted by the red bars in Fig. 11. Taking into account that the height of a

component is 0.5 ;;, the rigid grid has been designed with a thickness of 0.8 ;;.

With this choice the minimum reachable distance between a reflecting surface

and a photo-reflector is <= � 0.3 ;;. On the other side, the silicone layer have

been designed so that, in rest condition, the sum of the grid thickness and of the

cell walls fixes the white ceilings at an initial distance <? � 1 ;; from the

emitting surface of the optical components. The integrated design of these two

components allows to force the photo-reflectors to work in the monotonic working

area, highlighted by the green bars in Fig. 11.

Figure 11 Characteristic for a single taxel: normalized voltage vs reflective surface distance

 14

2.7 Integration of the sensor in a commercial

gripper

The connector compatible with the sensor port available on the commercial

grippers WSG-series, manufactured by Weiss Robotics, has been integrated, in

order to provide the 5V voltage supply to the sensor and for the physical

implementation of the serial interface. The assembled force/tactile sensor is finally

fixed inside an aluminum case suitably designed to house the sensor and for the

mechanical connection to the WSG-series flange. Fig. 12 reports a picture of the

sensorized finger fully integrated with the gripper.

The microcontroller section available on the PCB allows two possible connections

to exchange data with the main PC. In the fully integrated version, the PCB

takes the voltage supply directly from the sensor port available on the WSG-series

flange. The same port is used to implement a standard serial communication

between the gripper and the sensor. The microcontroller interrogates the A/D

converters via an SPI interface and transmits the raw via its serial port. The

gripper is programmable by using the LUA programming language, that is an

interpreted language suitably designed for embedded applications. The second

possible connection from the microcontroller to the robot control PC foresees the

use of a standard USB-to-serial converter with an external cable, that directly

Figure 12 Picture of the sensorized finger fully integrated with the WSG-32 gripper

 15

connects the microcontroller to the main PC. In this case, the power supply and

the serial transmission are implemented directly from the PC.

The solution to limitations related to the serial port latency time is to interface

the microcontroller with a serial-to-WIFI adapter, in order to use a wireless

connection directly with the PC. On the control PC, two different ROS nodes

have been developed: one to interact with the gripper, if the first solution is

selected, and another one to directly interact with the microcontroller in the

second case. In both cases the ROS nodes receive raw data (i.e., the 50 bytes

acquired by the A/D converters) and the first elaboration consists in the

reconstruction of actual voltage values, which are published to be available for

the whole ROS network.

Figure 13 Data flow scheme of possible connections from the sensor to the control PC

 16

Chapter 3 Dataset for Calibration

In general, force/torque sensor calibration is the process of mapping raw sensor

data to each force and torque. This sensor was calibrated with a gray-box model

deduced by a FEM analysis. This approach has some limitations, in particular

that the sensor was able to estimate only the forces and not all the wrench

components. The idea of calibration is presented in the following picture.

 Figure 14 Calibration data flow

A Machine learning-based approach is able to overcome the limitations of the

previous procedure. The critical point of the machine learning-based approach is

the training data collection. The objective is to estimate the wrench in all possible

combinations in a large interval of the contact plane orientation. The

dimensionality of the problem is large, so there is a significant risk of missed

wrench/orientation combinations in the training set. Moreover, the

dimensionality and the correlation among the inputs, whose number (25 for the

 17

sensor) is significantly larger than the dimension of the target set and the large

number of samples acquired during the calibration phase can slow down the

training phase and can easily cause unnecessary overfitting.

3.1 Training Set Construction

In order to collect the training set data, the sensor is mounted on a reference

force/torque sensor, the (Robotous RFT40), as in Fig. 15. Σ�AB is the reference

frame of both sensors; Σ�AB is a frame placed in the center of the undeformed

silicone sphere; CDEF is a frame placed in the center of pressure (GHI) of the

contact area with the J K3�� normal to the contact plane.

An operator who applies forces and moments by touching the sensor with an

object makes data generation. The target wrench and the input tactile voltages

are recorded synchronized through the ROS network. In order to ensure a good

training set, the input space (and consequently the target space) has to be

properly covered. Furthermore, bad data should be avoided, e.g., samples during

slipping of the object on the sensor pad surface or during the relaxing phase of

the deformable layer. These issues are tackled by resorting to a dedicated Matlab

GUI (Fig. 16).

Figure 15 Testbench for sensor calibration.

 18

Figure 16 GUI used in the calibration procedure

The user interface displays in real-time the calibration data acquired. The

visualization of the samples is carried out using the limit surface (LS) theory,

which is an extension of the Coulomb friction model to the case of roto-

translational slippage. The LS gives information about the maximum force and

torsional moment that can be applied before a slippage occurs, it is a surface

defined in the 3D space of the two tangential force components and the torsional

moment (the component of the contact moment along the direction normal to the

contact surface). When the wrench is inside this surface no slippage occurs,

otherwise, there is relative motion between the two contacting surfaces. The

maximum pure tangential force (that is the component of the force tangential to

the contact surface) and torsional moment are given by:

�LMNO � ��P;
RPMNO � S�PTU
;

where �P is the component of force normal to the contact frame, � is the classical

Coulomb friction coefficient, S and V are parameters of the maximum torque

 19

model. All parameters have been previously estimated experimentally. The GUI

visualizes the 3D space of tangential force and torsional moment normalized with

respect to �LMNO and RPMNO , respectively, using four different plots: a 3D plot and

three separate plots one for each view from each coordinate axis. In this

normalized space, the LS is approximated as a unit sphere centered in the origin

drawn in the 3D plot. This method is useful to discard samples acquired in any

slipping phase, namely, samples outside the LS are not included into the training

set. This decision about data inclusion cannot be directly taken based on the

measured wrench referred to the sensor frame Σ�WP�. In fact, the LS is defined

based on the wrench referred to the ΣDEF frame. The homogeneous transformation

matrix expressing the pose of the GHI frame with respect to the sensor frame is

estimated considering the tactile map. First of all, the centroid of the tactile

map is calculated as:

3D � ∑ 3�Δ6��%�Z
∑ Δ6��%�Z

5D � ∑ 5�Δ6��%�Z
∑ Δ6��%�Z

where -3�, 5�/ are the coordinates of the �1ℎ taxel and [6� is the difference between

the actual voltage value and the voltage value in rest conditions. The centroid is

also plotted in the GUI in a separate plot to aid the user understand where he/she

is touching the sensor. The GHI is considered located in the point on the contact

surface corresponding neglecting the deformation of the sphere (consider that this

computation is simply aimed at helping the operator in the calibration procedure).

Hence, the coordinates of the GHI with respect to the Σ�AB frame are:

\DEF�AB �] 3D5D^�� � 3*� � 5*
_

 20

where � � 50 ;; is the sphere radius. Given the distance between Σ�AB and

Σ�WP� (20 mm) it is trivial to find the coordinates of the GHI with respect to the

sensor frame (\DEF�WP�). The orientation of the contact plane is basically given by

the normal vector to the contact plane. Since the GUI is just an aid for the

operator, the contact plane can be well approximated as tangent to the sphere.

So the normal unit vector can be calculated with respect to the sphere frame as:

àDEF�AB � 1� \DEF�AB

Choosing the sphere frame aligned to the sensor frame, this normal vector has the

same components in the sensor frame and it is selected as the J � K3�� of the

contact frame. The 3 and 5 K3b� of the contact frame can be trivially choosen as

the projection of the same axes of sensor frame on the contact plane (conveniently

normalized). The computed axes can be organized into a rotation matrix cDEF�WP�

and, finally, the homogenouse transformation matrix of the contact frame is

dDEF�WP� � ecDEF�WP� \DEF�WP�0 1 f
Finally, by inverting the last matrix, it is possible to find the force and moment

vectors in the contact frame:

gDEF � c�WP�DEF ��WP�
hDEF � c�WP�DEF h�WP� 	 \�WP�DEF × gDEF

With the LS aid, the operator can visualize only the tangential forces and the

torsional moment. It is not possible to see variations in the normal force and in

the contact plane orientation. Moreover, it is impossible to include such

information in the plot because it is already a 3D plot and plots with higher

dimensions are impossible to easily visualize. To overcome this problem, in the

GUI the operator can select a target interval for the normal force among a set of

 21

predefined intervals. Given the centroid position, a polar area is uniquely defined.

In the same manner, given the normal force value, an interval of forces is defined.

In this way it is possible to define various 3D spaces, one for each possible

combination of the normal force interval and polar area. The task of the operator

is to cover all these 3D spaces with samples, the program will automatically

discard bad samples.

3.2 Training set Preprocessing

Data Preprocessing is a huge topic, because the preprocessing techniques vary from

data to data. Different kind of data (images, text, sounds, videos, csv files, etc)

have different methods for preprocessing. However, there are some common

methods for almost any kind of data. The most important methods are:

 Transformation into vectors: If one got raw text data and need some

mechanism to convert those strings into some meaningful numerical

representation. If one got categorical data in a csv file, he might want to

apply label encoding, or one-hot-encoding. It’s a conversion of the data into

float (or in some cases, integers), so that ML model can easily process all

that.

 Normalization: It’s highly recommended that your data is properly

scaled, which means that data should not have a very huge deviation for

every column (feature). For instance, if a column has values between 0–1

and another feature whose values are between 100–1000, then this difference

of value ranges can cause large gradient updates by optimizer, and

network/model might not converge. So, a good way will be to normalize

values which are between 100–1000, scaling them between 0–1. Breaking

into steps, following steps should be applied to get maximum benefit out of

normalization:

 22

 Smaller values: Try to have all the values between 0 and 1, or -

1 to 1.

 Homogeneity: All the columns should have values in roughly the

same range.

 Mean: Normalize in a way that data have a mean of 0 for each

column independently.

 Standard deviation: Normalize in a way that data have a

standard deviation of 1 for each column independently.

 Dealing with the missing values: Having missing values in a dataset

is very common, and an effective way to handle missing values leads to a

better model trained. One way is to replace all the missing values with 0.

If there are a lot of missing values in the data, and data are replaced with

0, the model will eventually learn that all the 0s aren’t playing any role in

decision-making process of the model, and will pretty much ignore them

by assigning them lower weights. Interpolation of the data is a meaningful

option as well. Otherwise, missing values are replaced by mean, or median

values of the respective column they’re a part of.

3.2.1 Training set decimation

The motivation for a decimation algorithm is that samples are often collected so

that there are zones of the training set with a very high density compared to

others. This is typical when forces are low, e.g., the operator is at the beginning

of a maneuver. So there are a lot of samples that add few new information to the

dataset. This can cause a useless increase in the computational load and can

encourage the learning algorithm to specialize the model towards the behaviour

in these high density zones. Therefore, these samples should be removed. The

 23

number of samples is reduced through a bubble-based decimation algorithm

described hereafter in a general case. The idea is to fix a maximum density for

the samples in the input space. Let j be the total number of samples and the

couple -6�, ��/ the � � 1ℎ sample with input 6� ∈ �= and target �� ∈ �L, the

training set is:

l� � {-n�, o�/, � ∈ pqr}
Where

pqr � {1, … , j}
Note that in the particular case of study 6� ∈ c�%, and �� ∈ c$. The main idea is

to define a bubble in the space of the inputs such that, centering the bubble in a

sample, no other sample is in the bubble. In other words, the objective is to find

a subset l�∗ of l� such that:

pqr∗ � {u ∈ pqr ∶ w6x � 64w > . ∀0 ∈ pqr , 0 ≠ u}
being . the radius of the bubble. In this way the maximum density in the input

space will be of 1 sample per bubble. The bubble-based decimation can be applied

to an heterogeneous input space too, e.g., made of inputs of different scale. In

that case it is necessary a pre-normalization of the input data. Considering that

for each normal force interval and polar area the voltage map has to be rather

different, this algorithm can be applied separately on the data of each 3D space.

In this way the computational load of the decimation is reduced.

3.2.2 PCA

Work with many variables can present different problems. If there are a lot of

variables is difficult to understand the relationships between variables.

Furthermore, more variables means better chance of overfitting. Principal

 24

Components Analysis (PCA) is a way of identifying patterns in data, and

expressing the data in such a way as to highlight their similarities and differences.

Since patterns in data can be hard to find in a high dimensional space, where the

advantage of graphical representation is not available, PCA is a powerful tool for

analysing data.

3.2.2.1 Intuitive explanation of PCA

First step of PCA is the computation a matrix that summarizes how our variables

all relate to one another. Then this matrix is divided into two separate

components: direction and magnitude. It is possible to understand the “directions”

of the data and its “magnitude” (or how “important” each direction is). Figure 17,

displays the two main directions in this data: the “red direction” and the “green

direction.” In this case, the “red direction” is the more important one. Later will

be discussed in which sense is more important.

Now a transformation is applied on original data to align with these important

directions (which are combinations of our original variables). Figure 18 is the

Figure 17 Dataset before PCA

 25

same exact data as above, but transformed so that the x-and y-axes are now the

“red direction” and “green direction.”

The visual example here is two-dimensional (and thus two “directions”), think

about a case where data has more dimensions. By identifying which “directions”

are most “important,” it is possible to compress or project data into a smaller

space by dropping the “directions” that are the “least important”. By projecting

data into a smaller space, the dimensionality of the feature space is reduced.

3.2.2.2 How PCA works?

Let the data matrix { be of | × } size, where | is the number of samples and p is

the number of features. Let us assume that it is centered, i.e. column means have

been subtracted and are now equal to zero. Then the } × } covariance matrix G is

given by G � ~�~P�
. It is a symmetric matrix and so it can be diagonalized:

G � ���q

Figure 18 Dataset after PCA

 26

where � is a matrix of eigenvectors (each column is an eigenvector) and � is a

diagonal matrix with eigenvalues �� in the decreasing order on the diagonal. The

eigenvectors are called principal axes or principal directions of the data.

Projections of the data on the principal axes are called principal components.

Every principal component will always be orthogonal to every other principal

component. Because our principal components are orthogonal to one another, they

are statistically independent of one another. For this reason columns of projected

data are independent of one another. In general, once eigenvectors are found from

the covariance matrix, the next step is to order them by eigenvalue, highest to

lowest. This gives the components in order of significance. Now if the purpose is

dimensionality reduction, one can decide to ignore the components of lesser

significance. This choice causes loss of some information, but if the eigenvalues

are small, loss is small. If the data originally have dimensions }, and one calculates

eigenvectors and eigenvalues, and then only the first 0 eigenvectors are chosen,

then the final data set has only 0 dimensions. The question becomes “How to

choose k?”

Different approaches can be used:

 Arbitrary selection of the number of dimensions. If one wants to

plot data in two dimensions needs two features. This is use-case dependent

and there isn’t a hard-and-fast rule to choose how many features pick.

 Calculate the proportion of variance explained for each feature,

pick a threshold, and add features until a threshold is hit. (For example,

if one wants to explain 80% of the total variability possibly explained by

the model, add features with the largest explained proportion of variance

until proportion of variance explained ≥ 80%.)

 27

 Calculate the proportion of variance explained for each feature, sort

features by proportion of variance explained and plot the cumulative

proportion of variance explained as one keeps more features. This plot is

called a scree plot, it is shown in figure 19. One can pick how many

features to include by identifying the point where adding a new feature has

a significant drop in variance explained relative to the previous feature,

and choosing features up until that point. Because each eigenvalue is

roughly the importance of its corresponding eigenvector, the proportion of

variance explained is the sum of the eigenvalues of the features kept divided

by the sum of the eigenvalues of all features.

The red line indicates the proportion of variance explained by each feature, which

is calculated by taking that principal component’s eigenvalue divided by the sum

of all eigenvalues. The proportion of variance explained by including only

principal component 1 is
�₁�₁ U �₂ U … U �A, which is about 23%. The proportion of

Figure 19 Scree Plot

 28

variance explained by including only principal component 2 is
���₁ U �₂ U … U �A, or

about 19%. The proportion of variance explained by including both principal

components 1 and 2 is
��U���₁ U �₂ U … U �Awhich is about 42%. The yellow line

indicates the cumulative proportion of variance explained by principal

components up to that point.

3.2.2.3 Relationship between SVD and PCA

PCA is essentially based on calculation of eigenvector on covariance matrix. This

type of calculation brings with it different problems from a computational point

of view (eigenvector decomposition is computationally expensive) and from a

memory point of view (having to calculate the covariance matrix). For this reason

the most used algorithm for the PCA is the Singular Value Decomposition, known

as SVD. This decomposition, differently from eigendecomposition, can be applied

also on rectangular matrices. Typically, in a dataset, number of points is | ≫ }

number of features. Considering dataset {, Singular Value Decomposition of { is:

{ � �,�q
The matrices � and � are column-orthonormal, meaning that as vectors, the

columns are orthogonal, and their lengths are 1. The matrix � is a diagonal

matrix, and the values along its diagonal are called singular values. From here,

one can easily see that the covariance matrix is:

G � �,�q| � 1 � � ,�| � 1 �q

meaning that right singular vectors � are principal directions and that singular

values are related to the eigenvalues of covariance matrix via �� � ���P�
. Principal

 29

components are given by {� � �,�q� � �,. To reduce the dimensionality of the

data from } to 0 < }, select 0 first columns of � and then multiply for the data.

3.2.2.4 Why PCA works and when it fails

PCA is a very technical but relatively intuitive method. First, the covariance

matrix is a matrix that contains estimates of how every variable relates to every

other variable. Understanding how one variable is associated with another is quite

powerful. Second, eigenvalues and eigenvectors are important. Eigenvectors

represent directions. One can think of an individual eigenvector as a particular

“direction” in scatterplot of data. Eigenvalues represent magnitude, or

importance. Bigger eigenvalues correlate with directions that are more important.

Finally, the assumption that more variability in a particular direction correlates

with explaining the behaviour of the dependent variable. Lots of variability

usually indicates signal, whereas little variability usually indicates noise. Thus,

the more variability there is in a particular direction is, theoretically, indicative

of information. Thus, PCA is a method that brings together:

 A measure of how each variable is associated with one another.

(Covariance matrix)

 The directions in which our data are dispersed. (Eigenvectors)

 The relative importance of these different directions. (Eigenvalues)

PCA combines our predictors and allows to drop the eigenvectors that are

relatively unimportant. While, the projection method is simple and effective in

performing dimensionality reduction. If there are overlapping instances, simply

projecting data towards a hyperplane may result in the loss of important

information. If the Swiss Roll is projected into 2D plane (e.g. by dropping x3),

PCA would simply squash the various layers together and lose all the information.

 30

The aim is to unroll the Swiss roll obtaining a 2D data set without much loss of

information. This technique is called Manifold Learning. For instance, in Swiss

Roll example, the objective of the algorithm would be to learn the optimal way

to unfold Swiss Roll in enabling us to capture as much of the information as

possible.

3.2.2.5 Example of Application

PCA is widely used in several field: quantitative finance, neuroscience, computer

vision, etc... However, the field of computer vision is definitely the one where it

finds greater application for different purposes such as pattern recognition, image

compression, etc…

 PCA for pattern recognition: Images can be considered as a matrix of

values N pixels high by N pixels wide. For each image it’s possible to create

an image vector and insert this victor in a big image-matrix. PCA is

applied on this big image-matrix. Then, the problem is, given a new image,

whose face from the original set is it? The way this is done is computer

vision is to measure the difference between the new image and the original

images, but not along the original axes, along the new axes derived from

the PCA analysis. It turns out that these axes works much better for

Figure 20 Swiss Roll

 31

recognising faces, because the PCA analysis has given the original images

in terms of the differences and similarities between them. PCA analysis

has identified the statistical patterns in the data.

 PCA for image compression. The idea of image compression is to create

a vector for each pixel of the dataset images. Each item in the vector is

from a different image. Then one performs the PCA on this set of data

getting N eigenvectors because each vector is N-dimensional. To compress

the data some neglects some of the eigenvectors. However, when the

original data is reproduced, the images have lost some of the information.

This compression technique is said to be lossly because the decompressed

image is not exactly the same as the original, generally worse.

Figure 21 Image compression using PCA

 32

3.2.3 Traning Set Reduction using PCA

After preprocessing using bubbles, the second step was dimensionality reduction

using PCA. Figure 11 reports the plot of the cumulative sum of eigenvalues of the

input covariance. After 15 components, the cumulative sum is over 0.999. The

choice made here is to take into account the first . � 15 components. Let � ∈
 c�×� be the matrix of the first . singular vectors, the �1ℎ compressed input will

be:

n�∗ � �qn�

V
a
ri
a
n
c
e
 E

xp
la

in
e
d

Figure 22 Plot variance explained vs number of components

 33

Chapter 4 Machine Learning Algorithms

4.1 What is Machine Learning?

A lot of people therefore have this misconception that artificial intelligence was

designed to replace humans and whatever we do in our daily work or at home. AI

was (and is being) developed for the sole purpose of augmenting our lives and

amplifying our skills and capabilities in all that we do. We are entering an age

where man and machine will collaborate ever more closely. Arthur Samuel in 1959

coined the world Machine Learning

“Machine learning is a branch of data analytics where the machine based on the

input Models (Experience) predicts certain behaviours and also learn to adapt

without much programming intervention.”

Tom M. Mitchell provided a widely quoted, more formal definition of the

algorithms studied in the Machine Learning field:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P if its performance at tasks in T, as

measured by P, improves with experience E.”

Figure 23 Machine Learning as subfield of Artificial Intelligence

 34

Machine Learning is a key finding in this digital evolution and it’s undoubtedly

going to shape the future. Our computers are no more used for only simple

calculations they are capable of processing petabytes of data in seconds , so ML

algorithms when supplemented with right set of data can be a game changer for

sectors like manufacturing, healthcare, auto industries, Banking, financial,

science…

There are three most regularly listed categories of Machine Learning:

 Supervised Learning: The group of algorithms that require dataset

which consists of example input-output pairs. Each pair consists of data

sample used to make prediction and expected outcome called label. Word

“supervised” comes from a fact that labels need to be assigned to data by

the human supervisor. There are two main problems that can be solved

with Supervised Learning:

o Classification: process of assigning category to input data sample.

Example usages: predicting whether a person is ill or not, detecting

fraudulent transactions, face classifier.

o Regression: process of predicting a continuous, numerical value for

input data sample. Example usages: assessing the house price,

forecasting grocery store food demand, temperature forecasting.

Figure 24 Machine Learning fields of application

 35

 Unsupervised Learning: Group of algorithms that try to draw inferences

from non-labeled data (without reference to known or labeled outcomes).

In Unsupervised Learning, there are no correct answers. Models based on

this type of algorithms can be used for discovering unknown data

patterns and data structure itself.

The most common applications of Unsupervised Learning are:

o Pattern recognition and data clustering: Process of dividing

and grouping similar data samples together. Groups are usually

called clusters. Example usages: segmentation of supermarkets,

user base segmentation, signal denoising.

o Reducing data dimensionality: Data dimension is the number

of features needed to describe data sample. Dimensionality

reduction is a process of compressing features into so-called

principal values which conveys similar information concisely. By

selecting only a few components, the amount of features is reduced

and a small part of the data is lost in the process. Example usages:

speeding up other Machine Learning algorithms by reducing

numbers of calculations, finding a group of most reliable features in

data.

o Reinforcement Learning: It is a branch of Machine Learning

algorithms which produces so-called agents. The agent role is

slightly different than classic model. It’s to receive information from

the environment and react to it by performing an action. The

information is fed to an agent in form of numerical data, called

state, which is stored and then used for choosing right action. As a

result, an agent receives a reward that can be either positive or

 36

negative. The reward is a feedback that can be used by an agent to

update its parameter

4.2 Machine Learning Training Setup

This paragraph aims to present the approach used to compare the different

algorithms presented in the following pages. The block diagram of the training of

the Machine Learning algorithms, presented in Figure 26, is essentially the same.

Search for best hyperparameters will be explained later.

Figure 25 Machine Learning categories

Figure 26 Prediction data flow

 37

In the block of preprocessing (Fig. 27 (a)) data are scaled to values in the range

��1,1� and then, when all the features are in the same scale, PCA is applied, using

SVD. The output of the Machine Learning must return in the same scale it had

before, so a normalization inverse is applied (Fig. 27(b)). These steps were easily

made using Scikit-Library presented in Python.

Figure 27 (a) Preprocessing block. (b) Postprocessing block.

When training is complete, model can be easily exported in a JSON file and

it can be loaded at any time. Prediction data flow is represented in fig. 28.

Last step, is the visualization of the results in a plot. Furthermore, MSE is

computed on test set, for each of 6 axis.

4.3 Decision Tree for Regression

Decision Tree algorithm belongs to the family of supervised learning algorithms.

Unlike other supervised learning algorithms, decision tree algorithm can be used

 (a) (b)

Figure 28 Prediction data flow

 38

for solving regression and classification problems too. The general motive of

using Decision Tree is to create a training model which can use to predict class

or value of target variables by learning decision rules inferred from prior data

(training data). A Decision Tree is a hierarchically organized structure, with each

node splitting the data space into pieces based on value of a feature. Equivalent

to a partition of �� into � disjoint feature subspaces {�
, . . . , �� }, where each

�x ⊂ �� On each feature subspace �x, the same decision/prediction is made for

all 3 ∈ �x. First to understand how a regression tree works, a bit of terminology

is necessary:

 Parent of a node c is the immediate predecessor node.

 Children of a node c are the immediate successors of c, equivalently nodes

which have c as a parent.

 Root node is the top node of the tree, the only node without parents.

 Leaf nodes are nodes which do not have children.

 A K-ary tree is a tree where each node (except for leaf nodes) has K

children. Usually working with binary trees (� � 2).

 Depth is the maximal length of a path from the root node to a leaf node.

Figure 29 Tree structure and terminology

 39

Differently from Decision Tree, Regression Trees minimize the error (e.g. square

loss error) in each leaf. First assume that 3 is univariate and training samples are

arranged so that 3
 < 3� < ⋯ < 3P. Given a set of observations of the dependent

variable 5, what is the one number 5� that best characterizes those j
 values of

5. Minimizing � �5 � 5��� , the value that minimizes this is 5� �
��5�. Approximation of ��5� is the sample mean, which is 5� .The root node

becomes a parent node which spawns two children. Each of the children becomes

a parent node which in turn spawn two more children. Hence a parent node is

always “above” its children. After the root node is constructed, two children node

are created in the following manner: Determine a "split" value of �, termed �� so
that if � ≤ ��, so prediction is 5-}/ � 5¡ and if � ≥ ��, prediction is 5-}/ � 5¢

(� for "left" and � for "right"). It would be delightful if that split on 3

simultaneously split 5 such that all the sample values of 5 that arrive in the left

node are identical (standard deviation is zero) and all the values of 5 in the right

node were a different value of 5, but again with a standard deviation of zero. This

is probably not going to happen so the algorithm finds the value of 3� such that

the total squared error (TSE) is minimized:

l,� � £ �5� � 5¡�
�:�¥�r

� 	 £ �5� � 5¢�
�:�¦�r

�

This is equivalent to minimizing l,� � |¡C¡� 	 |¢C¢� where |¡ is the number of

training sample that end up in the left node and C¡ is the sample standard

deviation (with |¡ in the denominator) and C¢ and |¢ refer to the right hand

node. At this stage, all the training examples sit in one of the two children nodes

and the predicted value of the examples in each of the nodes is the mean of the

samples in that node. For a new test example, depending on whether the value of

the independent variable is less than or greater than the split value of the root

node, the predicted value would either 5¡ or 5¢. For univariate 3, the algorithm

 40

recursively split at each node, generating two children nodes from each parent

node until the variance within each node is zero. This could happen if there is

only a single sample in a node or all the samples have the same value of the

dependent variable. If � is multivariate, then at each node, we examine each

feature of �, and determine its best split value. That feature with the minimum

TSE becomes the feature to split on. Every time the algorithm determines two

new nodes from a parent node, the TSE decreases until it decreases to zero.

However, this is done on the training set, improve generalization tree is pruned.

4.3.1 Regression Tree Example

Predict a baseball player’s Salary based on Years (the number of years that he

has played in the major leagues) and Hits (the number of hits that he made in

the previous year). First step is to remove observations that are missing. Salary

values, and log-transform Salary so that its distribution has more of a typical bell-

shape. Recall that Salary is measured in thousands of dollars.

Figure 30 Tree representation of salary

 41

The tree represents a series of splits starting at the top of the tree.

 The top split assigns observations having §bK.� < 4.5 to the left branch.

 The predicted salary for these players is given by the mean response value

for the players in the data set with §bK.� < 4.5.

 For such players, the mean log salary is 5.107, and so we make a prediction

of b%.
?' thousands of dollars, i.e. 165, 174.

Regions delimited by the classifier can be

described with:

1. �1 � { | §bK.� < 4.5
2. �2 � {|§bK.� ≥ 4.5, ª�1� < 117.5
3. �2 � {|§bK.� ≥ 4.5, ª�1� ≥ 117.5

In keeping with the tree analogy, the regions �1, �2, and �3 are known as

terminal nodes or leaves of the tree. Decision trees are typically drawn upside

down, in the sense that the leaves are at the bottom of the tree. The points along

the tree where split happens are referred to as internal nodes. The two internal

nodes are indicated by the text §bK.� < 4.5 and ª�1� < 117.5. The segments of

the trees that connect the nodes as branches. How it’s interpretable this tree?

Years is the most important factor in determining Salary, and players with less

experience earn lower salaries than more experienced players. Given that a player

is less experienced, the number of hits that he made in the previous year seems

Figure 31 Regions delimited from the tree

 42

to play little role in his salary. But among players who have been in the major

leagues for five or more years, the number of hits made in the previous year does

affect salary, and players who made more hits last year tend to have higher

salaries. The regression tree shown in figure is likely an over-simplification of the

true relationship between Hits, Years, and Salary, but it’s a very nice easy

interpretation over more complicated approaches.

4.3.2 Stopping Criteria

All decision trees need stopping criteria or it would be possible, and undesirable,

to grow a tree in which each case occupied its own node. The resulting tree would

be computationally expensive, difficult to interpret and would probably not work

very well with new data. Essentially 3 stopping rules are adopted:

1. The node depth is equal to the maxDepth training parameter.

2. The TSE obtained by generating two children nodes from a parent node

does not reduce the TSE (from the parent node) by at least a certain

threshold, i.e. 5%.

3. No split candidate produces child nodes which have at least

minInstancesPerNode training instances each.

4.3.3 Overfitting

Overfitting is a practical problem while building a decision tree model. The model

is having an issue of overfitting is considered when the algorithm continues to go

deeper and deeper in the to reduce the training set error but results with an

 43

increased test set error i.e, accuracy of prediction goes down. It generally happens

when it builds many branches due to outliers and irregularities in data.

Two approaches which we can use to avoid overfitting are:

 Pre-Pruning: Pre-pruning is also called forward pruning or online-

pruning. Pre-pruning prevent the generation of non-significant branches.

Pre-pruning a decision tree involves using a “termination condition” to

decide when it is desirable to terminate some of the branches prematurely.

When constructing the tree some significant measures can be used to

understand the goodness of a split. If partitioning the tuples at a node

would result the split that falls below a threshold, then further partitioning

of the given subset is halted otherwise it is expanded. High threshold result

in oversimplified trees, whereas low threshold result in very little

simplification.

 Post-Pruning: In post-pruning first, it goes deeper and deeper in the tree

to build a complete tree. If the tree shows the overfitting problem then

pruning is done as a post-pruning step. One of the most common pruning

methods used to improve generalization is K-fold cross validation. This

makes use of the existing data to simulate independent test data. First, all

Figure 32 Plot error vs Tree size

 44

of the data are used and the tree grows as large as possible. This is the

reference, unpruned tree. Pruning starts at the terminal nodes and

proceeds in a stepwise fashion, sequentially removing the least important

nodes until the desired size is reached. The end product of this process is

a pruned reference tree which should produce the optimum performance

with new data.

4.3.4 Regression Tree Pros and Cons

4.4 K-NN

The k-nearest neighbours algorithm(k-NN) is a non-parametric method used

for classification and regression. In both cases, the input consists of the k closest

training examples in the feature space. The output depends on whether k-NN is

used for classification or regression:

 In k-NN classification, the output is a class membership. An object is

classified by a plurality vote of its neighbours, with the object being

assigned to the class most common among its k-nearest neighbours (k is a

Figure 33 Advantages vs Disadvantages Regression Tree

 45

positive integer, typically small). If 0 � 1, then the object is simply

assigned to the class of that single nearest neighbour.

 In k-NN regression, the output is the property value for the object. This

value is the average of the values of its k nearest neighbours.

K-Nearest Neighbour estimation was proposed sixty years ago, but because of the

need for large memory and computation, the approach was not popular for a long

time. With advances in parallel processing and with memory and computation

getting cheaper, such methods have recently become more widely used.

Unfortunately, it can still be quite computationally expensive when it comes to

large training dataset as we need to compute the distance for each sample. Also,

when we consider low-dimensional spaces and we have enough data, NN works

very well in terms of accuracy, as we have enough nearby data points to get a

good answer. As the number of dimensions increases the algorithm performs

worst, because distance measure becomes meaningless when the dimension of the

data increases significantly. k-NN is quite robust to noisy training data, especially

when a weighted distance is used.

Figure 34 Weights Uniform and Weights Distance

 46

The neighbours are taken from a set of objects for which the class (for K-NN

classification) or the object property value (for K-NN regression) is known. This

can be thought of as the training set for the algorithm, though no explicit training

step is required. A peculiarity of the K-NN algorithm is that it is sensitive to the

local structure of the data. A commonly used distance metric for continuous

variables is Euclidean distance.

 Euclidean Distance ^∑ -3� � 5�/�P�Z

 Manhattan Distance ∑ |3� � 5�|P�Z

 Chebyshev Distance max-3 � 5/
 Minkowski Distance ^∑ -3� � 5�/AP�Z
®

4.4.1 Knn Pros and Cons

4.4.2 K-NN Example

Consider the following table – it consists of the height, age and weight (target)

value for 10 people. The weight value of ID11 is missing. The purpose is to

predict the weight of this person based on their height and age. For a clearer

understanding of this, below is the plot of height versus age from the above

table:

Figure 35 KNN Pros and Cons

 47

In the above graph, the y-axis represents the height of a person (in feet) and the

x-axis represents the age (in years). The points are numbered according to the ID

values. The yellow point (ID 11) is the test point. The algorithm uses “feature

similarity” to predict values of any new data points. This means that the new

point is assigned a value based on how closely it resembles the points in the

training set. From the example, we know that ID11 has height and age similar to

ID1 and ID5, so the weight would also approximately be the same.

The average of the values is taken to be the final prediction. Below is a stepwise

explanation of the algorithm:

1. First, the distance between the new point and each training point is

calculated.

Figure 36 Table of height, age, weight

Figure 37 2D Visualization of the table

 48

2. The closest 0 data points are selected (based on the distance). In this

example, points 1, 5, 6 will be selected if value of 0 is 3.

3. The average of these data points is the final prediction for the new point.

Here, weight of ¯°11 � ''U'�U$? � 69.66 0±.

The second step is to select the 0 value. Depending of k, the final result tends to

change. Then how it’s possible to figure out the optimum value of 0? It can be

decided on the error calculation for train and validation set. For a very low value

of 0 the model overfits on the training data, which leads to a high error rate on

the validation set. On the other hand, for a high value of 0, the model performs

poorly on both train and validation set. Observing closely Fig.39, the validation

error curve reaches a minima at a value of 0 � 9. This value of 0 is the optimum

value of the model (it will vary for different datasets). This curve is known as an

“elbow curve” and It is usually used to determine 0.

Figure 38 3-NN Regression

 49

4.4.3 Nearest Neighbours Algorithm

 Brute Force. The most naive neighbor search implementation involves

the brute-force computation of distances between all pairs of points in the

dataset: this approach scales as ²�°j��. Efficient brute-force neighbors

searches can be very competitive for small data samples. However, as the

number of samples grows (| ≥ 30) , the brute-force approach quickly

becomes infeasible. Brute force query time is unchanged by data structure

and it is largely unaffected by the value of k.

 K-D Tree. These structures attempt to reduce the required number of

distance calculations by efficiently encoding aggregate distance information

for the sample. Using K-D Tree computational cost of a nearest neighbors

search can be reduced to ²�°j³H±j� or better. The construction of a KD

tree is very fast: because partitioning is performed only along the data

axes, no D-dimensional distances need to be computed. Once constructed,

the nearest neighbor of a query point can be determined with only

²�³H±j� distance computations. Though the KD tree approach is very fast

for low-dimensional (° < 20) neighbors searches, it becomes inefficient as

grows very large: this is one manifestation of the so-called “curse of

Figure 39 Elbow curve

 50

dimensionality”. K-D Tree is sensitive to structure of the data and

becomes slower as k increases.

 Ball Tree. To address the inefficiencies of KD Trees in higher dimensions,

the ball tree data structure was developed. Where KD trees partition data

along Cartesian axes, ball trees partition data in a series of nesting hyper-

spheres. This makes tree construction more costly than that of the KD

tree, but results in a data structure which can be very efficient on highly

structured data, even in very high dimensions. Computational complexity

is ²�°³H±j� however performance is highly dependent on the structure of

the training data. Ball Tree becomes slower as k increases.

4.4.4 K-NN Calibration Results

After a dimensionality reduction using PCA,data have been divided in training

set and test set in a random way. First step was to understand the optimal

number of neighbours. For this reason the elbow curve has been drawn in Fig 40.

Figure 40 Elbow curve calibration dataset

 51

The value chosen, according to elbow curve, was of 3. Different metrics have been

compared, using the same value of neighbours. As show in the image below, when

samples are weighted according to distance mean squared error calculated on test

set is lower.

After choosing the model parameters, a test has been conducted. Results on a

batch of 3000 samples are shown below.

Figure 41 Error Rate vs Metric using different weights

Figure 42 MSE on calibration test set

 52

4.5 Boosting and Bagging

Bagging and Boosting are similar in that they are both ensemble techniques,

where a set of weak learners are combined to create a strong learner that obtains

better performance than a single one.

4.5.1 What is a weak learner?

Weak learner is a learner that no matter what the distribution over the training

data is will always do better than chance, when it tries to label the data.

Many possibilities for weak classifiers exist, e.g.:

 Decision stumps. It’s a 1-Level decision tree whose geometry is a vertical

or horizontal line. It is a simple test based on a single feature.

Eg: If an email contains the word "money", it is a spam; otherwise, it is a

non-spam

 Decision trees. They are a more generale version of decision stumps. At

every node a decision is made.

4.5.2 What is an ensemble method?

Ensemble is a Machine Learning concept in which the idea is to train multiple

models using the same learning algorithm. The ensembles take part in a bigger

group of methods, called multiclassifiers, where a set of hundreds or thousands

of learners with a common objective are fused together to solve the problem.

The second group of multiclassifiers contain the hybrid methods. They use a

set of learners too, but they can be trained using different learning techniques.The

main causes of error in learning are due to noise, bias and variance. Ensemble

helps to minimize these factors. These methods are designed to improve the

stability and the accuracy of Machine Learning algorithms. Combinations of

 53

multiple predictors decrease variance, especially in the case of unstable predictors,

and may produce a more reliable prediction than a single predictor. To use

Bagging or Boosting you must select a base learner algorithm. For example, if one

choose a regression tree, Bagging and Boosting would consist of a pool of trees.

4.5.3 How do Bagging and Boosting get N learners?

Bagging and Boosting get j learners by generating additional data in the training

stage. j new training data sets are produced by random sampling with

replacement from the original set. By sampling with replacement some

observations may be repeated in each new training data set.

In the case of Bagging, any element has the same probability to appear in a new

data set. However, for Boosting the observations are weighted and therefore some

of them will take part in the new sets more often. These multiple sets are used to

train the same learner algorithm and therefore different classifiers are produced.

4.5.4 Why are the data elements weighted?

While the training stage is parallel for Bagging (i.e., each model is built

independently), Boosting builds the new learner in a sequential way.

In Boosting algorithms each model is trained on data, taking into account the

previous predictors’ results. After each training step, the weights are redistributed

Figure 43 Boosting and bagging

 54

mispredicted data increases its weights to emphasise the most difficult cases. In

this way, subsequent learners will focus on them during their training.

4.5.5 How does the prediction stage work?

Prediction step is made applying j learners to the new observations. In Bagging

the result is obtained by averaging the responses of the j learners. However,

Boosting assigns a second set of weights, this time for the j classifiers, in order

to take a weighted average of their estimates. In the Boosting training stage, the

algorithm allocates weights to each resulting model. A learner with good a

prediction result on the training data will be assigned a higher weight than a poor

one. So when evaluating a new learner, Boosting needs to keep track of learners’

errors, too. Let’s see the differences in the procedures:

Figure 45 Prediction stage

Figure 44 Bagging vs Boosting training

 55

Some of the Boosting techniques include an extra-condition to keep or discard a

single learner. For example, in Adaboost, the most renowned, an error less than

50% is required to maintain the model; otherwise, the iteration is repeated until

achieving a learner better than a random guess. The previous image shows the

general process of a Boosting method, but several alternatives exist with different

ways to determine the weights to use in the next training step and in the

prediction stage.

4.5.6 Bagging and boosting comparison

There’s not an outright winner; it depends on the data, the simulation and the

circumstances. Bagging and Boosting decrease the variance of your single

estimate as they combine several estimations from different models. So the result

may be a model with higher stability. If the problem is that the single model gets

a very low performance, Bagging will rarely get a better bias. However, Boosting

could generate a combined model with lower errors as it optimises the advantages

and reduces pitfalls of the single model. By contrast, if the difficulty of the single

model is over-fitting, then Bagging is the best option. Boosting for its part doesn’t

Figure 46 Bagging vs Boosting adaptation to error

 56

help to avoid over-fitting; in fact, this technique is faced with this problem itself.

For this reason, Bagging is effective more often than Boosting.

4.6 Random Forest

A Random Forest is an ensemble technique capable of performing both regression

and classification tasks with the use of multiple decision trees and a technique

called Bootstrap Aggregation, commonly known as bagging. Bagging, in the

Random Forest method, involves training each decision tree on a different data

sample where sampling is done with replacement, reducing variance.

Figure 47 Similarities and differences between Boosting and Bagging

Figure 48 Random forest seen as ensembling models

 57

Random forests for regression are formed by growing trees depending on a random

vector � such that the tree predictor ℎ-�, ´/ takes on numerical values as opposed

to labels. The output values are numerical and we assume that the training set

is independently drawn from the distribution of the random vector Y,X. The

mean-squared generalization error for any numerical predictor ℎ-�/ is
�µ,¶ ·§ � ℎ-µ/¸�

Prediction is made by taking the average over k of the trees {ℎ-�, ´4 /}. The

algorithm can be divided in two stages. In the first step, | Trees are trained

selecting a random subset ; of total features 0, until a stopping criteria occurs.

In prediction stage every tree produces its output and final output is computed

averaging all predictions.

4.6.1 Out-of-Bag error

Out-of-bag (OOB) error, also called out-of-bag estimate, is a method of

measuring the prediction error of random forests, boosted decision trees, and other

machine learning models utilizing bagging. OOB is the mean prediction error on

each training sample xᵢ, using only the trees that did not have xᵢ in their bootstrap

sample. In contrast to boosting, trees are independent so they can be trained in

parallel.

Figure 49 Bag and out of bag data

 58

4.6.2 Important Hyperparameters

Random forests have the reputation of being relatively easy to tune. This is

because they only have a few hyperparameters, and aren't overly sensitive to the

particular values they take. Tuning the hyperparameters can often increase

generalization performance somewhat

 n_estimators: the number of trees the algorithm builds before taking the

maximum voting or taking averages of predictions. In general, a higher number

of trees increases the performance and makes the predictions more stable, but

it also slows down the computation.

 max_features: increasing max_features generally improves the performance

of the model as at each node now we have a higher number of options to be

considered. However, this is not necessarily true as this decreases the diversity

of individual tree. But, for sure, it decreases the speed of algorithm by

increasing the max_features.

 min_sample_leaf: leaf is the end node of a decision tree. A smaller leaf

makes the model more prone to capturing noise in train data.

 max_depth: the maximum depth of the tree. If None, then nodes are

expanded until all leaves are pure or until all leaves contain less than

min_samples_split samples.

 59

4.6.3 Pros and Cons

4.6.4 Random Forest Calibration Results

After a dimensionality reduction using PCA, data have been divided in training

set and test set in a random way. First step is to understand the number of trees

along each axis. The curve decreases with a growing number of tree and this mean

more stability and smaller variance in predictions. However, computations begins

slower and slower, for this reason a trade-off must be chosen. The value chosen is

of 100. ¹� and �� results are in figure 51-52.

Figure 50 Advantages vs disvantages of Random Forest

 60

In Random Forest at each node a splitting is made according to the criterion

adopted. In regression case, criterion is Mean Squared Error or Mean Absolute

Error. Performance are about equal (Figure 53-54), however training is slower in

MAE.

Figure 51 Plot Number of estimators of ¹�

Figure 52 Plot Number of estimators of ��

 61

All features in Random Forest are adopted and min_sample_leaf equal to 2

(default value), because performance gets worse when this value increases. Using

these parameter and the other parameters previously tuned, a complete

simulation on test set has been done. For an easy visualization only 3000 samples

are shown in figure 55.

Figure 53 Plot of ¹� Losses

Figure 54 Plot of �� Losses

 62

4.7 AdaBoost

In the regression context, boosting and bagging are techniques to build a

committee of regressors that may be superior to a single regressor. Both bagging

and boosting are techniques to obtain smaller prediction errors (in regression) and

lower error rates (in classification) using multiple predictors. AdaBoost, short for

Adaptive Boosting, is a machine learning meta-algorithm formulated by Yoav

Freund and Robert Schapire in which “weak learners” are combined into a

weighted sum that represents the final output of the boosted classifier. AdaBoost

is adaptive in the sense that subsequent weak learners are tweaked in favor of

those instances mispredicted by previous predictors. The individual learners can

be weak, but as long as the performance of each one is slightly better than random

guessing, the final model can be proven to converge to a strong learner.

Figure 55 MSE on Test set

 63

In AdaBoost, each training instance receives a weight �� that is used when

learning each hypothesis; this weight indicates the relative importance of each

instance and is used in computing the error of a hypothesis on the dataset. After

each iteration, instances are reweighted, according to loss error, receiving larger

and proportional weights. Thus, as the process continues, learning focuses on

those instances that are most difficult to infer. The key to AdaBoost is the

reweighting.

Figure 56 Regression using Adaboost

Figure 57 Adaboost pseudocode

 64

4.7.1 Adaboost Loss functions

In regression problems, the output given by a hypothesis ℎL for an instance 3� is
correct or incorrect, but has a real-valued error b� � |5� � ℎL-3�/| that may be

the method used in AdaBoost.R2 is to express each error in relation to the largest

error ° � max� |b�|. In this way that each adjusted error b�′ is normalized. In

particular, one of three possible loss functions is used:

 Linear b�» � W�¼

 Square b�» � W��¼�

 Exponential b�» � 1 � exp-� W�¼/
According to the plot, linear loss puts always the same penalization for different

values of the error. This doesn’t happen for square loss and exponential loss.

Indeed, square loss puts higher and higher emphasis on outliers, differently from

exponential loss, which has a smoother shape. For this reason exponential loss is

more suitable than square loss in AdaBoost. The degree to which instance xi is

reweighted in iteration 1 thus depends on how large the error of 1 is on 3� relative

to the error on the worst instance.

Figure 58 Adaboost Losses

 65

4.7.2 Weighted Median

The choice of the median is arbitrary, probably because the author of the first

paper thought that median-based approaches because they generalize

AdaBoost, not because they are by some metric better.

In statistics, a weighted median of a sample is the 50% weighted percentile. It

was first proposed by F. Y. Edgeworth in 1888. Like the median, it is useful as

an estimator of central tendency, robust against outliers. It allows for non-uniform

statistical weights related to, e.g., varying precision. For | distinct ordered

elements 3
, 3�, … , 3P with positive weights �
, ��, … , �P such that ∑ �� � 1P�Z
 ,

the weighted median is the element 34 satisfying

£ �� ≤ 12
4�

�Z
 K|< £ �� ≤ 12

P
�Z4U

This is a generalization of the standard median which is the weighted median of

a set of elements with equal weight. If weights of all numbers in the set are equal

then median is same as weighted median.

For simplicity, consider the set of numbers {1;2;3;4;5} with each number having

weights {0.15; 0.1; 0.2; 0.3; 0.25} respectively. The median is 3 and the weighted

median is the element corresponding to the weight 0.3, which is 4. The weights

on each side of the pivot add up to 0.45 and 0.25, satisfying the general condition.

Figure 59 The left chart shows a list of elements with values indicated by height and the median
element shown in red. The right chart shows the same elements with weights as indicated by the

width of the boxes. The weighted median is shown in red and is different

 66

4.7.3 Adaboost Pros and Cons

4.7.4 Adaboost Calibration Results

After a dimensionality reduction using PCA,data have been divided in training

set and test set in a random way. First step is to understand the optimal number

of estimators. For this reason a curve that relates number of estimators and loss

is calculated. The curve, obviously, decreases and this mean more stability and

accuracy. However, computations begins slower and slower, for this reason a

trade-off must be chosen. The value chosen is of 150. Two example are shown

below for ¹� and ��.

Figure 60 Adaboost advantages and disadvantages

Figure 61 Plot number of estimators ¹�

 67

After that, learning rate must be tuned. Learning rate regulates the “speed” with

which weights are updated. According to the plots learning rate is 1.5. As

previous, two example, of the same axes, are shown.

Figure 62 Plot of number of estimators ��

Figure 63 Plot of learning rate ¹�

 68

Finally, last step is the choice of the loss. Usually, linear loss performs better in

AdaBoost. Linear loss works better than exponential and square loss, also in this

case.

Figure 64 Plot of learning rate ��

Figure 65 Plot of losses ¹�

 69

A simulation with all these parameters is shown below. Mean squared error is

calculated for every axis using all data in Test set. In figure 67 is plotted error for

a batch of 3000 samples, for a better visualization.

Figure 66 Plot of Losses ��

Figure 67 MSE on test set

 70

Chapter 5 Gaussian Process

A Gaussian process is a stochastic process (a collection of random variables

indexed by time or space), such that every finite collection of those random

variables has a multivariate normal distribution, i.e. every finite linear

combination of them is normally distributed. The distribution of a Gaussian

process is the joint distribution of all those (infinitely many) random variables,

and as such, it is a distribution over functions with a continuous domain, e.g.

time or space. A machine-learning algorithm that involves a Gaussian process

uses lazy learning and a measure of the similarity between points (the kernel

function) to predict the value for an unseen point from training data. The

prediction is not just an estimate for that point, but also has uncertainty

information-it is a one-dimensional Gaussian distribution (which is the marginal

distribution at that point).When a parameterised kernel is used, optimisation

software is typically used to fit a Gaussian process model.

.

5.1 Gaussian Distribution and properties

The Gaussian density is perhaps the most commonly used probability density. It

is defined by a mean, �, and a variance, C�. The variance is taken to be the

square of the standard deviation, σ.

\-¶|�,��/ � 1√2 ÀC� exp Á� -5 � �/�2 C� Â ≜ Ä-5|�, C�/

 71

The Gaussian density has two important properties:

 Sum of Gaussians

 Scaling a Gaussian

5.1.1 Sum of Gaussians

If 5� is sampled from a Gaussian density, 5� ∼ Ä-��, C�2/

It’s possible to show that the sum of a set of variables, each drawn independently

from this density, is also distributed as Gaussian. The mean of the resulting

density is the sum of the means, and the variance is the sum of the variances,

£ 5�
P

�Z
 ∼ Ä Æ£ ��
P

�Z
 , £ C��
P

�Z
 Ç

Most random variables, when they are added together, change the family of

density they are drawn from. The Gaussian is exceptional in this regard. Indeed,

other random variables, if they are independently drawn and summed together

tend to a Gaussian density. That is the central limit theorem which is a major

justification for the use of a Gaussian density.

Figure 68 Gaussian Distribution

 72

5.1.2 Scaling a Gaussian

Less unusual is the scaling property of a Gaussian density. If a variable, y, is

sampled from a Gaussian

5 ∼ Ä-�, C�/

and the variable is scaled by a deterministic value, �, then the scaled variable is

distributed as:

�5 ∼ Ä-��, ��C�/

Unlike the summing properties, where adding two or more random variables

independently sampled from a family of densities typically brings the summed

variable outside that family, scaling many densities leaves the distribution of that

variable in the same family of densities. Indeed, many densities include

a scale parameter (e.g. the Gamma density) which is purely for this purpose. In

the Gaussian the standard deviation,C, is the scale parameter. To see why this

makes sense, consider:

J ∼ Ä-0,1/
then if scaling by C, 5 � CJ , so y will have a distribution:

5 � CJ ∼ Ä-0, C�/

5.1.3 Prior Distribution

The tradition in Bayesian inference is to place a probability density over the

parameters of interest in your model. This choice is made regardless of whether

you generally believe those parameters to be stochastic or deterministic in origin.

In other words, to a Bayesian, the modelling treatment does not differentiate

between epistemic and aleatoric uncertainty. For linear regression, an example

prior could be the following Gaussian prior on the intercept parameter:

 73

∼ Ä-0, S
/
where α
 is the variance of the prior distribution, its mean being zero.

5.1.4 Posterior Distribution

The prior distribution is combined with the likelihood of the data given the

parameters }-5|#/ to give the posterior via Bayes' rule,

}-#|5/ � }-5|#/ }-#/}-5/

where }-5/ is the marginal probability of the data, obtained through integration

over the joint density, }-5, #/ � }-5|#/}-#/

}H�1b.�H. � ³�0b³�ℎHH< 3 }.�H.;K.±�|K³ ³�0b³�ℎHH<

 Figure 69 Prior, Likelihood and Posterior Gaussian Distributions

 74

5.1.5 Multivariate Gaussian

The multivariate normal distribution, multivariate Gaussian distribution, or joint

normal distribution is a generalization of the one-dimensional (univariate) normal

distribution to higher dimensions.

}-¶/ � 1
det 2ÀË
� �exp � 12 -¶ � Ì/qΣ�
-¶ � Ì/�

Covariance matrix , is a matrix whose element in the �, u position is

the covariance between the � � 1ℎ and u � 1ℎ elements of a random vector. A

random vector is a random variable with multiple dimensions. Each element of

the vector is a scalar random variable. The equation above reduces to that of the

univariate normal distribution if is a 1 x 1 matrix (i.e. a single real number).

Figure 70 Bidimensional Gaussian distribution

 75

5.2 Gaussian Process from different views

There are several ways to interpret Gaussian process (GP) regression models. One

can think of a Gaussian process as defining a distribution over functions, and

inference taking place directly in the space of functions, the function-space view.

Although this view is appealing it may initially be difficult to grasp, so we start

our exposition in section with the equivalent weight-space view which may be

more familiar and accessible to many, and continue in section with the function-

space view.

5.2.1 Weight Space view

The simple linear regression model where the output is a linear combination of

the inputs has been studied and used extensively. Its main virtues are simplicity

of implementation and interpretability. Its main drawback is that it only allows

a limited flexibility. If the relationship between input and output can not

reasonably be approximated by a linear function, the model will give poor

predictions. In the next few lines will be discussed the Bayesian analysis of the

standard linear regression model with Gaussian noise

�-3/ � �q� , 5 � �-3/ 	 Í

where 3 is the input vector, � is a vector of weights (parameters) of the linear

bias, offset model, � is the function value and 5 is the observed target value.

Often a bias weight or offset is included, but as this can be implemented by

augmenting the input vector 3 with an additional element whose value is always

one. This under the assumption that the observed values 5 differ from the function

values �-3/ by additive noise distributed Gaussian distribution with zero mean

and variance CP�:

Î ∼ Ä-0, CP�/

 76

Likelihood. This noise assumption together with the model directly gives rise to

the likelihood, the probability density of the observations given the parameters,

which is factored over cases in the training set (because of the i.i.d. assumption)

to give:

}-¶|{, o/ � Ï }-5�|�Ð, o/P
�Z

� Ï 1^2ÀCP exp Á� -5� � ��Lo/2CP� ÂP
�Z
� 1-2ÀCP�/P/� exp �� 12CP� |¶ � µqo|�� � Ä-µqo, C|2 Ò/

In the Bayesian formalism we need to specify a prior over the parameters,

expressing our beliefs about the prior parameters before we look at the

observations. Considering a zero mean Gaussian prior with covariance matrix ΣA

on the weights:

� ∼ Ä-0, Σp/
Inference in the Bayesian linear model is based on the posterior distribution

posterior over the weights, computed by Bayes’ rule:

}H�1b.�H. � ³�0b³�ℎHH< 3 }.�H.;K.±�|K³ ³�0b³�ℎHH< , }-o|¶, {/ � }-¶|{, o/}-o/}-¶|{/

Where the normalizing constant, also known as the marginal likelihood, is

independent of the weights and given by:

}-¶|{, o/ � Ó }-¶|{, o/ }-o/ <o

The posterior combines the likelihood and the prior, and captures everything

known about the parameters. Writing only the terms from the likelihood and prior

which depend on the weights, and “completing the square” equation becomes:

 77

}-o|¶, {/ � exp �� 12CP� -¶ � {qo/q-¶ � {qo/� exp �� 12 oqΣÔ�
o�
 � exp �� 12 -o � o/q � 1CP� {{q 	 ΣÔ�
� -o � o/�

where o � CP� -CP�� {{q 	 ΣÔ�
/�Õ{¶. This is the form of the posterior

distribution as Gaussian with mean o and covariance matrix Ö�

}-o|¶, {/ ∼ Ä Áo � 1C|2 Ö�1{¶, Ö�1Â

Where Ö � CP�� {{q 	 ΣA�
.To make predictions for a test case it’s made an

average over all possible parameter values, weighted by their posterior

probability. This is in contrast to non-Bayesian schemes, where a single parameter

is typically chosen by some criterion. Thus the predictive distribution for

�∗ ≜ �-3∗/ at 3∗ is given by averaging the output of all possible linear models

w.r.t. the Gaussian posterior:

}-�∗|�∗, {, ¶/ � Ó }-�∗|3∗, o/ }-o|{, ¶/<o � Ä Á 1C|2 3∗lÖ�1{¶, 3∗lÖ�13∗Â
The predictive distribution is again Gaussian, with a mean given by the posterior

mean of the weights multiplied by the test input, as one would expect from

symmetry considerations. The predictive variance is a quadratic form of the test

input with the posterior covariance matrix, showing that the predictive

uncertainties grow with the magnitude of the test input, as one would expect for

a linear model.

 78

5.3 Function Space view

An alternative and equivalent way of reaching identical results to the previous

section is possible by considering inference directly in function space. We use a

Gaussian process (GP) to describe a distribution over functions. Formally:

Definition: A Gaussian process is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

A Gaussian process is completely specified by its mean function and covariance

and variance function. We define mean function ;-3/ and the covariance

function 0-3, 3»/ of a real process �-3/ as

;-3/ � ���-3/�
0-3, 3»/ � �×·�-3/ � ;-3/¸·�-3»/ � ;-3»/¸Ø

and will write the Gaussian process as

�-3/ ∼ ÙI -;-3/, 0-3, 3′//
Usually, for notational simplicity mean function will be considered equal to zero,

although this need not be done. A Gaussian process is defined as a collection of

random variables. Thus, the definition automatically implies the marginalization

property. This property simply means marginalization that if the ÙI e.g. specifies

-5
, 5�/ ∼ Ä-�, Σ/, then it must also specify property 5
 ∼ Ä·�11, Σ11 ¸ where Σ

 is the relevant submatrix of Σ. In other words, examination of a larger set of

variables does not change the distribution of the smaller set. A simple example of

a Gaussian process can be obtained from our Bayesian is a Gaussian process linear

regression model �-3/ � Ú-3/qo with prior � ∼ Ä·0, Σ} ¸. Mean and

covariance are defined as:

���-3/� � Ú-3/q��o� � 0

 79

���-3/�-3»/� � Ú-3/q��ood�Ú-3»/ � Ú-3/qΣÚ-3»/
The covariance function specifies the covariance between pairs of random

variables, e.g. in the case of squared exponential (SE) covariance function formula

will be:

#H6 Û�·�A¸, �·�Ü¸Ý � 0·�A, �Ü¸ � exp �� 12 Þ3A � 3ÜÞ��

Note, that the covariance between the outputs is written as a function of the

inputs. The specification of the covariance function implies a distribution over

functions. To see this, one can draw samples from the distribution of functions

evaluated at any number of points. This can be done choosing a number of input

points {∗ and write out the corresponding covariance matrix. A random Gaussian

vector is generated with this covariance matrix:

�∗ ∼ Ä -0, 0-{∗, {∗//
and plot the generated values as a function of the inputs. Figure 71(a) shows

three such samples. Notice that “informally” the functions look smooth. In fact,

the squared exponential covariance function is infinitely differentiable, leading to

the process being infinitely mean-square differentiable. The functions seem to

have a characteristic length-scale which informally can be thought of as roughly

the distance to move in input space before the function value can change

significantly. For SE Kernel the characteristic length-scale is around one unit. By

replacing |3A � 3Ü| with |3A � 3Ü|/ ℓ -ℓ > 0/ we could change the characteristic

length-scale of the process. Also, the overall variance of the magnitude random

function can be controlled by a positive pre-factor before the exp.

 80

 (a) (b)

Figure 71 (a) Show three functions drawn at random from a GP prior; the dots indicate values of y actually

generated. Panel (b) shows three random functions drawn from the posterior. In both plots the shaded area

represents the pointwise mean and plus two times the standard deviation for each input value.

5.3.1 Prediction with Noise-free Observations

Drawing random functions from the prior is not of primarily importance. Usually

the one wants to incorporate the knowledge that the training data provides about

the function. Consider the simple special case where the observations are noise-

free, that is we know {-��, g�/| � � 1, … , |}. The joint distribution of the training

outputs,g, and the test outputs g∗ according to the prior is:

) gg∗+ ∼ Ä �à,) �-{, {/ �-{, {∗/�-{∗, {/ �-{∗, {∗/+ �

If there are | training points and |∗ test points then �-{, {∗/ denotes the | × |∗
matrix of the covariances evaluated at all pairs of training and test points.

Similarly for the other entries �-{, {/, �-{∗, {∗/ and �-{∗, {/. To get the posterior

distribution over functions the joint prior distribution is restricted in order to

contain only those functions which agree with the observed data points.

g∗|{∗, {, g � Ä-�-{∗, {/�-{, {/�
g, �-{∗, {∗/ � �-{∗, {/�-{, {/�
�-{, {∗//
Function values g∗ (corresponding to test inputs {∗) can be sampled from the

joint posterior distribution by evaluating the mean and covariance matrix.

 81

5.3.2 Prediction using Noisy Observations

In realistic modelling situations one doesn’t have access to function values

themselves, but only noisy versions of 5 � �-3/ 	 Í. Assuming additive

independent identically distributed Gaussian noise Í with variance CP�, the prior

on the noisy observations becomes:

#H6·5A, 5Ü¸ � 0·3A, 3Ü¸ 	 CP�áAÜ or #H6-¶/ � �-{, {/ 	 CP�¯
where áAÜ is a Kronecker delta which is one iff } � â and zero otherwise. It

follows from the independence assumption about the noise, that a diagonal matrix

is added, in comparison to the noise-free case. Introducing the noise term, the

joint distribution of the observed target values and the function values at the test

locations can be written as:

) gg∗+ ∼ Ä �à,)�-{, {/ 	 CP�¯ �-{, {∗/�-{∗, {/ �-{∗, {∗/+ �
Deriving the conditional distribution, one arrives at the key predictive equations

for Gaussian process regression:

g∗|{∗, {, g � ÄÛg∗, #H6-g∗/Ý where

g∗ ≜ ��g∗|{, ¶, µ∗� � �-{∗, {/��-{, {/ 	 CP�¯��
¶,
#H6-g∗/ � �-{∗, {∗/ � �-{∗, {/��-{, {/ 	 CP�¯��
�-{, {∗/

Introducing a compact form of the notation setting � � �-{, {/ and �∗ �
 �-{, {∗/. In the case that there is only one test point 3∗ we write 0-3∗/ � 0∗ to

denote the vector of covariances between the test point and the | training points.

Using this compact notation and for a single test point 3∗, it reduces to

�∗ � ã∗q-� 	 CP�¯/�
¶

ä��∗� � 0-�∗, �∗/ � ã∗q-� 	 CP�¯/�
ã∗

 82

The mean prediction is a linear combination of observations 5; this is sometimes

referred to as a linear predictor. Another way to linear predictor look at this

equation is to see it as a linear combination of n kernel functions, each one

centered on a training point, by writing:

�-3∗/ � £ S�
P

�Z
 0-��, �∗/
where å � -� 	 CP�/�
¶. The fact that the mean prediction for �-3∗/ can be

written despite the fact that the GP can be represented in terms of a (possibly

infinite) number of basis functions is one manifestation of the representer

theorem. It will be useful to introduce the marginal likelyhood (or evidence)

}-5|{/ at this point. The marginal likelihood is the integral of the likelihood

times the prior:

}-¶|{/ � Ó }-¶|g, {/}-g|{/<g

The term marginal likelihood refers to the marginalization over the function

values f. Under the Gaussian process model the prior is Gaussian g|{ � Ä-à, �/,
or:

log }-g|{/ � � 12 gq��
g � 12 log��� � |2 log 2À

and the likelihood is a factorized Gaussian 5|� ~ Ä-g, CP�¯/. Performing

integration the log marginal likelihood:

log }-¶|{/ � � 12 ¶q-� 	 CP�/ �
¶ � 12 log |� 	 CP�¯| � |2 log 2À

This result can also be obtained directly by observing that 5 ~ Ä -0, � 	 CP�¯/

 83

5.4 Varying the Hyperparameters

Often, the covariance functions adopted have some free parameters. For example,

the squared-exponential covariance function in one dimension has the following

form:

0�·3A, 3Ü¸ � Cê� exp �� 12ℓ� ·3A � 3Ü¸�� 	 CP�áAÜ

The covariance is denoted 0� as it is for the noisy targets 5 rather than for the

underlying function�. The length-scale ℓ, the signal variance Cê� and the noise

variance CP� can be changed. Consider the data shown by “+” signs in Figure 72.

This was generated from a GP with the SE kernel with (ℓ, Cê, CP) � -1, 1, 0.1/.
The figure also shows the 2 standard-deviation error bars for the predictions

obtained using these values of the hyperparameters. Error bars get larger for input

values that are distant from any training points. Indeed if the 3 � K3�� were

extended one would see the error bars reflect the prior standard deviation of the

process Cê away from the data. If the length-scale shorter so that ℓ = 0.3 and

kept the other parameters the same, plots will be like those in Figure 72(a) except

that the 3 � K3�� should be rescaled by a factor of 0.3. Equivalently, if the same

3 � K3�� was kept as in Figure 72(a) then a sample function would look much

more wiggly. If one makes predictions with a process with ℓ � 0.3 on the data

generated from the ℓ = 1 process, obtains the result in Figure 72(b). The

remaining two parameters were set by optimizing the marginal likelihood. In this

case the noise parameter is reduced to CP = 0.00005 as the greater flexibility of

the “signal” means that the noise level can be reduced. This can be observed at

the two datapoints near 3 � 2.5 in the plots. In Figure 72(a) (ℓ � 1) these are

essentially explained as a similar function value with differing noise. However, in

Figure 72(b) (ℓ � 0.3) the noise level is very low, so these two points have to be

explained by a sharp variation in the value of the underlying function �. Notice

 84

also that the short length-scale means that the error bars in Figure 72(b) grow

rapidly away from the data. In contrast, if the length-scale is longer, for example

to ℓ � 3, as shown in Figure 72(c). Again the remaining two parameters were

set by optimizing the marginal likelihood. In this case the noise level has been

increased to CP � 0.89 and the data are now explained by a slowly varying

function with a lot of noise.

5.5 Covariance Functions

Covariance function is the crucial ingredient in a Gaussian process predictor, as

it encodes the assumptions about the predicted. From a slightly different

viewpoint it is clear that in supervised learning the notion of similarity between

data points is crucial. It is a basic similarity assumption that points with inputs

3 which are close are likely to have similar target values 5, and thus training

Figure 72 (a) Data is generated from a GP with hyperparameters -ℓ, Cê , CP/ � -1, 1, 0.1/, as shown by the

+ symbols. Using Gaussian process prediction with these hyperparameters we obtain a 95% confidence

region for the underlying function � (shown in grey). Panels (b) and (c) again show the 95% confidence

region, but this time for hyperparameter values -0.3, 1.08, 0.00005/ and -3.0, 1.16, 0.89/ respectively.

 85

points that are near to a test point should be informative about the prediction at

that point. The covariance function that defines nearness or similarity. An

arbitrary function of input pairs 3 and 3» will not, in general, be a valid

covariance function. The purpose of the next lines is to give examples of some

functions commonly-used covariance functions and to examine their properties.

Most important kernels covariance functions are:

 Squared Exponential

 Matérn

 Exponential

 The γ-exponential

 Rational Quadratic

Squared Exponential Covariance Function

The squared exponential (SE) covariance function has the form

0�W-./ � exp Á� .�2ℓ�Â

This covariance function is infinitely differentiable, which means that the GP with

this covariance function has mean square derivatives of all orders, and is thus

very smooth. Stein argues that such strong smoothness assumptions are

unrealistic for modelling many physical processes, and recommends the Matérn

class. However, the squared exponential is probably the most widely-used kernel

within the kernel machines field.

 86

The Matérn Class of Covariance Functions

Matérn class of covariance functions is given by

0ëìLéîP-./ � 2
�ïΓ-6/ Á√26.ℓ Âï �ï Á√26.ℓ Â

with positive parameters ñ and ℓ, where �ï is a modified Bessel function. Note

that the scaling is chosen so that for ñ → ∞ we obtain the SE covariance function

exp Û î�
�ℓ�Ý

Exponential Covariance Function

The special case obtained by setting ñ �
� in the Matérn class gives the

exponential covariance function 0-./ � exp Û� îℓÝ.

Figure 73 (a): Covariance functions, and (b) random functions drawn from a Gaussian processes with

Matérn covariance functions

 87

The γ-exponential Covariance Function

The γ-exponential family of covariance functions, which includes both the

exponential and squared exponential, is given by

0-./ � exp �Û.ℓÝT� �H. 0 < V ≤ 2.

Figure 74 (a) covariance functions, and (b) random functions drawn with a Gaussian process with the V-

exponential covariance function

Rational Quadratic Covariance Function

The rational quadratic (RQ) covariance function

0¢ô-./ � Á1 	 .�2Sℓ�Â�õ

with S, ℓ > 0 can be seen as a scale mixture (an infinite sum) of squared scale

mixture exponential (SE) covariance functions with different characteristic

length-scales.

Figure 75 (a) covariance functions, and (b) random functions drawn from Gaussian processes with rational

quadratic covariance functions

 88

5.6 Model Selection

Some properties of the model may be easy to specify, while one typically have

only vague information available about other aspects. The term model selection

is adopted to cover both discrete choices and the setting of continuous (hyper-)

parameters of the covariance functions. In fact, model selection can help both to

refine the predictions of the model, and give interpretation a valuable

interpretation to the user about the properties of the data. A multitude of possible

families of covariance functions exists, including squared exponential, polynomial,

neural network… Each of these families typically have a number of free

hyperparameters whose values also need to be determined. Model selection is

essentially open ended. Even for the squared exponential covariance function,

there is a huge variety of possible distance measures. However, this should not be

a cause for despair, rather seen as a possibility to learn. It requires, however, a

systematic and practical approach to model selection. For this reason a Bayesian

Model selection approach is needed. It is common to use a hierarchical

specification of models. At the lowest level are the parameters,�. For example,

the parameters could be the parameters in a linear model, or the weights in a

neural network model. At the second level are hyperparameters ´, which control

the distribution of the parameters at the bottom level.

At the bottom level, the posterior over the parameters is given by Bayes’ rule:

}-o|¶, {, ö, ª�/ � }-¶|{, o, ª�/}-o|ö, ª�/}-¶|{, ö, ª�/

where }-5|{, �, ª� / is the likelihood and }-�|´, ª�/ is the parameter prior. The

prior encodes as a probability distribution our knowledge about the parameters

prior to seeing the data. If one has only vague prior information about the

parameters, then the prior distribution is chosen to be broad to reflect this. The

posterior combines the information from the prior and the data (through the

likelihood). The normalizing constant in the denominator }-5|{, ´, ª�/ is

 89

independent of the parameters, and called the marginal likelihood (or evidence),

and is given by:

}-¶|{, ö, ª�/ � Ó }-¶|{, o, ª�/}-o|ö, ª�/<o

At the next level, the posterior over the hyperparameters is given, where the

marginal likelihood from the first level plays the role of the likelihood:

}-ö|¶, {, ª�/ � }-¶|{, ö, ª� /}-ö|ª�/}-¶|{, ª�/

where }-ö|ª�/ is the hyper-prior (the prior for the hyperparameters). The

normalizing constant is given by:

}-¶|{, ª�/ � Ó }-¶|{, ö, ª�/}-ö|ª�/<ö

At the top level the posterior for the model is:

}-ª�|{, ¶/ � }-5|{, ª�/}-ª�/}-¶|{/

Where }-¶|{/ � ∑ }-¶|{, ª� /}-ª�/� . The implementation of Bayesian inference

evaluates several integrals. Depending on the details of the models, these integrals

may or may not be analytically tractable and in general one may have to resort

to analytical approximations or Markov chain Monte Carlo (MCMC)

methods. The integral of }-¶|{, ª�/ can then be approximated using a local

expansion around the maximum (the Laplace approximation). This

approximation will be good if the posterior for ´ is fairly well peaked, which is

more often the case for the hyperparameters than for the parameters themselves.

The prior over models ª� in }-ª�|{, ¶/ is often taken to be flat, so that a priori

does not favour one model over another. It is primarily the marginal likelihood

from }-¶|{, ´, ª�/ involving the integral over the parameter space which

distinguishes the Bayesian scheme of inference from other schemes based on

 90

optimization. It is a property of the marginal likelihood that it automatically

incorporates a trade-off between model fit and model complexity. This is the

reason why the marginal likelihood is valuable in solving the model selection

problem.

5.6.1 Marginal Likelihood

Bayesian principles provide a persuasive and consistent framework for inference.

Unfortunately, for most interesting models for machine learning, the required

computations (integrals over parameter space) are analytically intractable,

and good approximations are not easily derived. Gaussian process regression

models with Gaussian noise are a rare exception: integrals over the parameters

are analytically tractable and at the same time the models are very flexible. Since

a Gaussian process model is a non-parametric model, it may not be immediately

obvious what the parameters of the model are. Generally, one may regard the

noise-free latent function values at the training inputs g as the parameters.

Rearranging equations the result is:

log }-¶|{, ö/ � � 12 ¶q���
¶ � 12 logÞ��Þ � |2 log 2À

Where �� � �ê 	 CP�¯ is the covariance matrix for the noisy targets ¶ (and �ê is

the covariance matrix for the noise-free latent g), and we now explicitly write the

marginal likelihood conditioned on the hyperparameters (the parameters of the

covariance function) ´. The three terms of the marginal likelihood log } -¶|{, ö/
have readily interpretable roles: the only term involving the observed targets is

the data-fit �
� 5q���
¶;
� logÞ��Þ is the complexity penalty depending only on

the covariance function and the inputs and
P� ³H±-2À/ is a normalization

constant. In Figure 74(a) is illustrated an example of log marginal likelihood.

The data-fit decreases monotonically with the length-scale, since the model

 91

becomes less and less flexible. The negative complexity penalty increases with the

length-scale, because the model gets less complex with growing length-scale. The

marginal likelihood itself peaks at a value close to 1. For length-scales somewhat

longer than 1, the marginal likelihood decreases rapidly due to the poor ability

of the model to explain the data.

Figure 76 (a) shows a decomposition of the log marginal likelihood and its constituents: data-fit and

complexity penalty,as a function of the charateristic length-scale. (b) shows the log marginal likelihood as a

function of the charateristic length-scale for different sizes of training sets.

For smaller length-scales the marginal likelihood decreases somewhat more slowly,

corresponding to models that do accommodate the data, but waste predictive

mass at regions far away from the underlying function. In Figure 76(b) the

dependence of the log marginal likelihood on the characteristic length-scale is

shown for different numbers of training cases. Generally, the more data, the more

peaked the marginal likelihood. For very small numbers of training data points

the slope of the log marginal likelihood is very shallow as when only a little data

has been observed, both very short and intermediate values of the length-scale

are consistent with the data. With more data, the complexity term gets more

severe, and discourages too short length-scales. likelihood To set the

hyperparameters by maximizing the marginal likelihood, we seek the partial

 92

derivatives of the marginal likelihood w.r.t. the hyperparameters. Deriving

expression w.r.t. to x́
÷÷øù log }-¶|{, ö/ �
� ¶q��
 ÷�÷øù ��
¶ �
� 1. ���
 ÷�÷øù� �
� 1. Á-SSq � ��
/ ÷�÷øùÂ

Where S � ��
¶
The complexity of computing the marginal likelihood is dominated by the need

to invert the � matrix (the log determinant of K is easily computed as a by-

product of the inverse). Standard methods for matrix inversion of positive definite

symmetric matrices require time ²-|/ for inversion of an | by | matrix. Once

��
 is known, the computation of the derivatives requires only time ²-|�/ per

hyperparameter. There is no guarantee that the marginal likelihood does not

suffer from multiple local optima. Practical experience with simple covariance

functions seem to indicate that local maxima are not a devastating problem, but

certainly they do exist.

5.7 Gaussian Processes Calibration Results

Calibration using Gaussian Processes has been developed with the help of George,

a fast and flexible Python library, for Gaussian Process (GP) Regression. George

is focused on efficiently evaluating the marginalized likelihood of a dataset under

a GP prior, even as this dataset gets Big. It’s possible to create a new kernel,

combine and use different kernels.

The main strength of the library lies in the possibility of optimizing kernel

parameters, minimizing marginal likelihood using L-BFGS algorithm, a method

that approximates the BFGS algorithm using a limited amount of computer

memory. BFGS algorithm is an iterative method for solving unconstrained

nonlinear optimization problems using approximation of the Hessian matrix.

A big limitation lies in having to use a limited number of samples (≤ 20 000)

 93

when compared with the size of the dataset n(≥ 500 000). To overcome this

limit, it was decided to create k small models using ; ≪ | samples each and

combine the mean and variance predicted of the individual models.

Calling �ûü mean predicted by each Gaussian Process, and C�� variance associated

with the � � 1ℎ model prediction, final mean and variance is calculated according

to the following equation

�ý � 10 £ �ý�4
�Z

6K.-�ý/ � 10� £ C��
4

�Z

However, the implementation turns out to be serial and not parallel. This

implementation tries to overcome memory limitation of the PC (framework

allocates matrix statically before computation) and numerical stability in

inversion of covariance matrix. Different kernels have been used and combined in

order to find which one performs better. When the structure of the kernel is fixed

a routine optimizes marginal likelihood, finding best parameters for the kernel.

Kernel chosen was Matérn52 along each axis, but with different values of length

scale (5 for force prediction and 1 for torque prediction).

0LEL � Ö 	 þ ∗ 0ëìLéîP-./
Where A and B are constant kernel. Results on every axis are shown in the

following figures. Data flow for Gaussian Processes is made up, as always, of a

preprocessing step, then 0 sub-samples of our dataset with replacement are

created. This procedure is repeated along each axis, and then training starts.

Finally, according to that previously described, parameters of the kernel chosen,

are optimized using a built-in minimization function of Scikit-learn library.

 94

Figure 77 Data flow Gaussian Processes

(a)

(b)

(c)

Figure 78 (a) Training block. (b) Preprocessing block. (c) Postprocessing block

 95

Figure 79 Prediction of ¹�

Figure 80 Prediction of ¹�

 96

Figure 81 Prediction of ¹�

Figure 82 Prediction of ��

 97

Figure 83 Prediction of ��

Figure 84 Prediction of ��

 98

Chapter 6 Deep Learning

AI is a study of how human brain think, learn, decide and work, when it tries to

solve problems. However, two categories of AI are frequently mixed up: Machine

Learning and Deep Learning. Both of these refer to statistical modelling of data

to extract useful information or make predictions.

Machine Learning is a method of statistical learning where each instance in a

dataset is described by a set of features or attributes. In contrast, the term “Deep

Learning” is a method of statistical learning that extracts features or attributes

from raw data. Deep Learning does this by utilizing neural networks with many

hidden layers, big data, and powerful computational resources. The terms seem

somewhat interchangeable, however, with Deep Learning methods, the algorithm

constructs representations of the data automatically. In contrast, data

representations are hard-coded as a set of features in machine learning algorithms,

Figure 85 Road to Deep Learning

 99

requiring further processes such as feature selection and extraction, (such as

PCA).

6.1 Machine Learning vs Deep Learning

After an overview of Machine Learning and Deep Learning, consider few

important points and compare the two techniques.

 Data Size: Both Machine Learning and Deep Learning are able to handle

massive dataset sizes, however, machine learning methods make much

more sense with small datasets. For example, with 100 data points, decision

trees, k-nearest neighbours, and other machine learning models will be

much more valuable to you than fitting a deep neural network on the data.

Figure 86 Difference between workflow of Machine Learning vs Deep Learning

Figure 87 Dependency from the data

 100

 Hardware dependencies: generally, deep learning depends on high-end

machines. While traditional learning depends on low-end machines. Thus,

deep learning requirement includes GPUs.

 Interpretability: a lot of the criticism of deep learning methods and

machine learning algorithms such as Support Vector Machine or (maybe,

because you can at least visualize the constituent probabilities making up

the output), Naive Bayes, are due to their difficulty to interpret. For

example, when a Convolutional Neural Network outputs ‘cat’ in a dog vs.

cat problem, nobody seems to know why it did that. In contrast, when you

are modelling data such as an electronic health record or bank loan dataset

with a machine learning technique, it is much easier to understand the

reasoning for the model’s prediction. One of the best examples of

interpretability is decision trees where you follow logical tests down nodes

of the tree until you reach a decision.

 Feature engineering: feature engineering is the process of transforming

raw data into features that represent better the underlying problem to the

predictive models, resulting in improved model accuracy on unseen data.

Feature engineering turn your inputs into things the algorithm can

understand.

 Execution time: usually, deep learning takes more time as compared to

machine learning to train. The main reason behind its long time is that so

many parameters in deep learning algorithm. Whereas machine learning

takes much less time to train, ranging from a few seconds to a few hours.

Figure 88 Features extraction example

 101

6.2 Neural Networks Structure

An artificial neural network is a network of simple elements called artificial

neurons, which receive input, change their internal state (activation) according

to that input, and produce output depending on the input and activation.

An artificial neuron mimics the working of a biophysical neuron with inputs and

outputs, but is not a biological neuron model.

Figure 89 Analogy artificial neuron with biophysical neuron

The basic unit of computation in a neural network is the neuron, often called a

node or unit. It receives input from some other nodes, or from an external source

and computes an output. Each input has an associated weight (�), which is

assigned on the basis of its relative importance to other inputs. The node applies

a function � to the weighted sum of its inputs as shown in Figure below:

Linear function: �3 	 �

Non-linearity activation �-3/
Every neuron computes �-�3 	 �/

The above network takes numerical inputs {
 and {� and has weight

weights �
 and �� associated with those inputs. Additionally, there is another

Figure 90 Structure of a neuron

 102

input 1 with weight � (called the Bias) associated with it. We will learn more

details about role of the bias later. The output § from the neuron is computed as

shown in the figure. The function � is non-linear and is called the Activation

Function. The purpose of the activation function is to introduce non-linearity

into the output of a neuron. This is important because most real world data is

non linear and we want neurons to learn these non linear representations.

6.3 Activation Function

Every activation function (or non-linearity) takes a single number and performs

a certain fixed mathematical operation on it. There are several activation

functios:

 Sigmoid: takes a real-valued input and squashes it to range �0,1�.
 Tanh: takes a real-valued input and squashes it to the range ��1, 1�.
 ReLU: ReLU stands for Rectified Linear Unit. It takes a real-valued

input and thresholds it at zero (replaces negative values with zero).

Figure 91 Activation function

 103

6.4 Feedforward Neural Network

The feedforward neural network was the first and simplest type of artificial neural

network devised. It contains multiple neurons (nodes) arranged in layers.

Nodes from adjacent layers have connections or edges between them. All these

connections have weights associated with them.

An example of a feedforward neural network is shown in Fig. 92.

A feedforward neural network can consist of three types of nodes:

 Input Nodes – The Input nodes provide information from the outside

world to the network and are together referred to as the “Input Layer”. No

computation is performed in any of the Input nodes – they just pass on

the information to the hidden nodes.

 Hidden Nodes – The Hidden nodes have no direct connection with the

outside world (hence the name “hidden”). They perform computations and

transfer information from the input nodes to the output nodes. A collection

Figure 92 General structure of a feedforward neural network

 104

of hidden nodes forms a “Hidden Layer”. While a feedforward network

will only have a single input layer and a single output layer, it can have

zero or multiple Hidden Layers.

 Output Nodes – The Output nodes are collectively referred to as the

“Output Layer” and are responsible for computations and transferring

information from the network to the outside world.

In a feedforward network, the information moves in only one direction – forward

– from the input nodes, through the hidden nodes (if any) and to the output

nodes. There are no cycles or loops in the network (this property of feed forward

networks is different from Recurrent Neural Networks in

which the connections between the nodes form a cycle).

Two examples of feedforward networks are given below:

 Single Layer Perceptron – This is the simplest feedforward neural

network and does not contain any hidden layer.

 Multi Layer Perceptron – A Multi Layer Perceptron has one or more

hidden layers.

6.5 The Back-Propagation Algorithm

Backward Propagation of Errors, often abbreviated as BackProp is a

supervised training scheme, which means, it learns from labeled training data

(there is a supervisor, to guide its learning).To put in simple terms, BackProp is

like “learning from mistakes“. The supervisor corrects the ANN whenever it

makes mistakes. An ANN consists of nodes in different layers: input layer,

intermediate hidden layers and the output layer. The connections between nodes

of adjacent layers have “weights” associated with them. The goal of learning is to

 105

assign correct weights for these edges. Given an input vector, these weights

determine what the output vector is. In supervised learning, the training set is

labeled. This means, for some given inputs, we know the desired/expected output.

BackProp Algorithm:

Initially all the edge weights are randomly assigned. For every input in the

training dataset, the ANN is activated and its output is observed. This output is

compared with the desired output that we already know, and the error is

“propagated” back to the previous layer using chain-rule. This error is noted and

the weights are “adjusted” accordingly using gradient descent. This process is

repeated until the output error is below a predetermined threshold.

Once the above algorithm terminates ANN is ready to work with “new” inputs.

This ANN is said to have learned from several examples (labeled data) and from

its mistakes (error propagation). The heart of backpropagation error is

computation of the gradient of the Neural Network.

Figure 93 Backpropagation forward pass and backward pass

Figure 94 Deep neural network structure

 106

For a given training pair {3, 5}, we want to update all weights; i.e., we need to

compute derivatives w.r.t. to all weights.

∇��{�,�}-�/ � � ÷ê÷��,�,�…÷ê÷��,M,�
	 �» � � � Î∇��{�,�}-�/

6.6 Optimization Algorithms

Once the analytic gradient is computed with backpropagation, the gradients are

used to perform a parameter update. There are several approaches for performing

the update. Note that optimization for deep networks is currently a very active

area of research. This section highlights some established and common techniques.

6.6.1 Gradient Descent

Gradient descent is a first-order iterative optimization algorithm for finding

the minimum of a function. To find a local minimum of a function using gradient

descent, one takes steps proportional to the negative of the gradient (or

approximate gradient) of the function at the current point.

Figure 95 Gradient descent visualization

GRADIENT

DESCENT

 107

If, instead, one takes steps proportional to the positive of the gradient, one

approaches a local maximum of that function; the procedure is then known

as gradient ascent. Gradient descent is also known as steepest descent.

�» � � � Î∇��-3/

 is called Learning Rate and it is an hyperparameter of the problem. It

determines how fast or slow we will move towards the optimal weights. In order

for Gradient Descent to reach the local minimum, we have to set the learning rate

to an appropriate value, which is neither too low nor too high. This is because if

the steps it takes are too big, it maybe will not reach the local minimum because

it just bounces back and forth between the convex function of gradient descent

like you can see on the left side of the image below. If you set the learning rate

to a very small value, gradient descent will eventually reach the local minimum

but it will maybe take too much time like you can see on the right side of the

image.

This is the reason why the learning rate should be neither too high nor too low.

6.6.2 Stochastic Gradient Descent (SGD)

Gradient is an expectation, and so it can be approximated with a small

number of samples in a minibatch.

Figure 96 Effects of changing learning rate

 108

Defining a minibatch þ� � {{3�, 5�}, {3�, 5�} … {3= , 5=}}, it’s possible to build up

to |/;.

�4U
 � �4 � S∇��·�4 , 3{
…=}, 5{
…=}¸
So parameters at the 0-th step are updated using only m samples in the

minibatch. However, SGD suffers of some problems:

 Gradient is scaled equally across all dimensions, for this reason learning

needs to be chosen conservatively to avoid divergence.

 Slow convergence.

 Finding good learning rate is an art by itself.

6.6.3 Gradient Descent with Momentum

Momentum is a method that helps accelerate SGD in the relevant direction and

dampens oscillation. It does this by adding a fraction β of the update vector of

the past time step to the current update vector:

64U
 � β 64 	 ∇��-�4/
�4U
 � �4 � S64U

Essentially, when using momentum, one pushes a ball down a hill. The ball

accumulates momentum as it rolls downhill, becoming faster and faster on the

way (until it reaches its terminal velocity if there is air resistance, i.e. β < 1).

Figure 97 Dampening gradient descent

 109

The same thing happens to the parameter. The momentum term increases for

dimensions whose gradients point in the same directions and reduces updates for

dimensions whose gradients change directions. As a result, it’s possible to achieve

faster convergence and reduced oscillation.

6.6.4 Root Mean Squared Prop (RMSProp)

RMSprop divides the learning rate by an exponentially-decaying average of

squared gradients. Dividing by square gradients it dampens the oscillations for

high-variance directions.

�4U
 � ��4 	 -1 � �/�∇�� ∘ ∇���
�4U
 � �4 � S ∇��√�4U
 	 Î

Î is used to avoid division by zero.

S needs tuning, � often 0.9, Î tipically 10�(

Can use faster learning rate because it is less likely to diverge

 Speed up learning speed

 Variance of gradients -> second momentum

6.6.5 Adaptive Moment Estimation (Adam)

Combines Momentum and RMSProp

Figure 98 Gradient descent with momentum

 110

First momentum ;4U
 � �
;4 	 -1 � �
/∇��-�4/
Second momentum 64U
 � ��64 	 -1 � ��/�∇��-�4/ ∘ ∇��-�4/�

�4U
 � �4 � ;4U

√64U
 	 Î

S needs tuning, �
 often 0.9, �� often 0.999, Î tipically 10�(.

6.7 Loss Functions

All the algorithms in machine learning rely on minimizing or maximizing a

function, called “loss functions”. A loss function is a measure of how good a

prediction model does in terms of being able to predict the expected outcome.

Loss depends on a number of factors including the presence of outliers, machine

learning algorithm, ease of finding the derivatives…

 Mean Square Error (MSE) is the most commonly used regression loss.

MSE is the sum of squared distances between targets and predicted.

�,� � ∑ ·5� � 5�A¸�P�Z
 |

L2 loss is sensitive to outliers, but gives a more stable and closed form

solution (by setting its derivative to 0.)

Figure 99 MSE

 111

 Mean Absolute Error (MAE) or L1 Loss is another loss function used

for regression models. MAE is the sum of absolute differences between our

target and predicted variables. So it measures the average magnitude of

errors in a set of predictions, without considering their directions.

�Ö� � ∑ |5� � 5�A|P�Z
 |

MAE loss is useful if the training data is corrupted with outliers (i.e. we

erroneously receive unrealistically huge negative/positive values in our

training environment, but not our testing environment). MAE loss is more

robust to outliers, but its derivatives are not continuous, making it

inefficient to find the solution.

6.8 Regularization Technique

Regularization is a technique which makes slight modifications to the learning

algorithm such that the model generalizes better. This in turn improves the

model’s performance on the unseen data as well. According to the picture, when

the point moves towards the right in this image, the model tries to learn too well

Figure 100 MAE Loss

 112

the details and the noise from the training data, which ultimately results in poor

performance on the unseen data.

Some techniques for regularizations are:

 L2 & L1 regularization. They are the most common types of

regularization. These update the general cost function by adding another

term known as the regularization term.

Cost function � Loss 	 Regularization term
Due to the addition of this regularization term, the values of weight

matrices decrease because it assumes that a neural network with smaller

weight matrices leads to simpler models. Therefore, it will also reduce

overfitting to quite an extent. However, this regularization term differs in

L1 and L2. In L2, cost function is:

Cost function � Loss 	 λ2m £|w|�

Here, lambda is the regularization parameter. It is the hyperparameter

whose value is optimized for better results. L2 regularization is also known

as weight decay as it forces the weights to decay towards zero (but not

exactly zero). In L1, we have:

Cost function � Loss 	 λ2m £|w|

Figure 101 Overfitting and underfitting

 113

In this, we penalize the absolute value of the weights. Unlike L2, the

weights may be reduced to zero here. Hence, it is very useful when we are

trying to compress the model. Otherwise, L2 is usually preferred over L1.

 Dropout. This is the one of the most interesting types of regularization

techniques. It also produces very good results and is consequently the most

frequently used regularization technique in the field of deep learning. To

understand dropout, let’s say our neural network structure is akin to the one

shown below:

At every iteration, Dropout randomly selects some nodes and removes

them along with all of their incoming and outgoing connections as shown

below.

So each iteration has a different set of nodes and this results in a different

set of outputs. Dropout can also be thought of as an ensemble technique

in machine learning. Ensemble models usually perform better than a single

Figure 102 Neural network before dropout

Figure 103 Neural network after dropout

 114

model as they capture more randomness. Similarly, dropout also performs

better than a normal neural network model. This probability of choosing

how many nodes should be dropped is a hyperparameter of the dropout

function. Dropout can be applied to both the hidden layers as well as the

input layers. Due to these reasons, dropout is usually preferred in large

neural networks structures in order to introduce more randomness.

 Batch Normalization: Batch normalization reduces the amount by what

the hidden unit values shift around (covariance shift). To increase the

stability of a neural network, batch normalization normalizes the output

of a previous activation layer by subtracting the batch mean and dividing

by the batch standard deviation.

�� � 1; £ 3�
=

�Z

C�� � 1; £-3� � ��/�=
�Z

3ûa � 3� � ��^C�� 	 Î

5� � V3ûa 	 � ≜ þjT,�-3�/
Batch normalization adds two trainable parameters to each layer, so the

normalized output is multiplied by a “standard deviation” parameter

(gamma) and add a “mean” parameter (beta). It allows each layer of a

network to learn by itself a little bit more independently of other layers.

It’s possible to use higher learning rates because batch normalization

makes sure that there’s no activation that’s gone really high or really low.

It reduces overfitting because it has a slight regularization effects. Similar

to dropout, it adds some noise to each hidden layer’s activations.

 115

6.9 Hyperparameters optimization

Training Neural Networks can involve many hyperparameter settings. The most

common hyperparameters in context of Neural Networks include: the initial

learning rate learning rate decay schedule (such as the decay constant)

regularization strength (L2 penalty, dropout strength). Larger Neural Networks

typically require a long time to train, so performing hyperparameter search can

take many days/weeks. It is important to keep this in mind since it influences the

design of your code base. Let’s see some useful tips.

 Hyperparameter ranges. Search for hyperparameters on log scale. The

same strategy should be used for the regularization strength. Intuitively,

this is because learning rate and regularization strength have multiplicative

effects on the training dynamics. For example, a fixed change of adding

0.01 to a learning rate has huge effects on the dynamics if the learning rate

is 0.001, but nearly no effect if the learning rate when it is 10. This is

because the learning rate multiplies the computed gradient in the update.

 Prefer random search to grid search. As argued by Bergstra and

Bengio “randomly chosen trials are more efficient for hyper-parameter

optimization than trials on a grid”. As it turns out, this is also usually

easier to implement.

Figure 104 Grid and random search

 116

 Careful with best values on border. Sometimes it can happen that

you’re searching for a hyperparameter (e.g. learning rate) in a bad range.

It is important to double check that the final learning rate is not at the

edge of this interval, or otherwise you may be missing more optimal

hyperparameter setting beyond the interval.

 Stage your search from coarse to fine. In practice, it can be helpful

to first search in coarse ranges, and then depending on where the best

results are turning up, narrow the range.

 Bayesian Hyperparameter Optimization is a whole area of research

devoted to coming up with algorithms that try to more efficiently navigate

the space of hyperparameters. The core idea is to appropriately balance

the exploration - exploitation trade-off when querying the performance at

different hyperparameters.

6.10 Weights initialization

Before you begin to train the network we have to initialize its parameters.

 All zero initialization. This turns out to be a mistake, because if every

neuron in the network computes the same output, then they will also all

compute the same gradients during backpropagation and undergo the exact

same parameter updates. In other words, there is no source of asymmetry

between neurons if their weights are initialized to be the same.

 Small random numbers. Therefore, one wants weights to be very close

to zero, but as we have argued above, not identically zero. As a solution,

it is common to initialize the weights of the neurons to small numbers and

refer to doing so as symmetry breaking. The idea is that the neurons are

all random and unique in the beginning, so they will compute distinct

 117

updates and integrate themselves as diverse parts of the full network. With

this formulation, every neuron’s weight vector is initialized as a random

vector sampled from a multi-dimensional Gaussian, so the neurons point

in random direction in the input space. It is also possible to use small

numbers drawn from a uniform distribution, but this seems to have

relatively little impact on the final performance in practice. A Neural

Network layer that has very small weights will during backpropagation

compute very small gradients on its data (since this gradient is

proportional to the value of the weights). This could greatly diminish the

“gradient signal” flowing backward through a network, and could become

a concern for deep networks.

 Variances �
√P. One problem with the above suggestion is that the

distribution of the outputs from a randomly initialized neuron has a

variance that grows with the number of inputs. It turns out that data can

normalize the variance of each neuron’s output to 1 by scaling its weight

vector by the square root of its fan-in (i.e. its number of inputs). This

ensures that all neurons in the network initially have approximately the

same output distribution and empirically improves the rate of convergence.

The sketch of the derivation is as follows: Consider the inner product
� � ∑ ��3�P� between the weights � and input 3, which gives the raw

activation of a neuron before the non-linearity.

 118

 �K.-�/ � �K. Æ£ ��3�
P
� Ç

� £ �K.-��3�/P
�

� £��-��/���K.-3�/ 	 ��-3�/���K.-��/ 	 �K.-3�/�K.-��/P
�

� £ �K.-3�/�K.-��/ � -|�K.-�/P
� /�K.-3/

It has been assumed zero mean inputs and weights, so ��3�� � ����� � 0.

Note that this is not generally the case: For example ReLU units will have

a positive mean. An assumption in the last step was made: �� , 3� are

identically distributed. To make variance unitary, the variance of every

weight � �
P. Since �K.-K{/ � K��K.-{/ for a random variable { and a

scalar K, this implies that we should draw from unit gaussian and then

scale it by K � ^1/|, to make its variance

P. A similar analysis is carried

out by Glorot et al. The authors end up recommending an initialization of

the form �K.-�/ � �P��UP�� where |�P , |E!L are the number of units in the

previous layer and the next layer. This is based on a compromise and an

equivalent analysis of the backpropagated gradients. A more recent paper

on this topic by He et al., derives an initialization specifically for ReLU

neurons, reaching the conclusion that the variance of neurons in the

network should be
�P. This is the current recommendation for use in practice

in the specific case of neural networks with ReLU neurons.

 Initializing the biases. It is possible and common to initialize the biases

to be zero, since the asymmetry breaking is provided by the small random

numbers in the weights. For ReLU non-linearities, some people like to use

small constant value such as 0.01 for all biases because this ensures that

 119

all ReLU units fire in the beginning and therefore obtain and propagate

some gradient. However, it is not clear if this provides a consistent

improvement (in fact some results seem to indicate that this performs

worse) and it is more common to simply use 0 bias initialization.

 Batch Normalization. It has become a very common practice to use

Batch Normalization in neural networks. In practice networks use Batch

Normalization are significantly more robust to bad initialization.

Additionally, batch normalization can be interpreted as doing

preprocessing at every layer of the network, but integrated into the

network itself in a differentiable manner.

6.11 Neural Network Calibration

After a preprocessing step, with dimensionality reduction, neural networks were

trained. There are no rules that indicate how to build a neural network. Using

MSE on test set, as a metric for performances, different architectures have been

tested. A variable number of hidden layers (from 4 to 8) of 100 neurons each with

different types of regularization: Dropout, Batch Normalization, L2. Different

combinations were tested, first individually, and then combined together.

Regularization L1 was neglected because shows worse performance compared to

L2. Tanh as activation function, RMSProp was the optimization algorithm

adopted. To condense error values (on Test set) of force and torque, the arithmetic

average was used.

All the code was easily developed using Keras, an high-level neural networks

API, written in Python and capable of running on top of TensorFlow, CNTK, or

Theano. It was developed with a focus on enabling fast experimentation.

 120

Figure 105 Deep Learning Model Training

Figure 106 (a) Training Model block. (b) Preprocessing block. (c) Postprocessing block.

 (a)

 (b)

(c)

 121

Results of the experiments are shown in the following tables:

 L2
REGULARIZATION

" � à. àÕ " � à. Õ " � Õ " � Õà

 4 Layers F[N] 0.596 0.650 1.101 3.169

 µ[Nm] 5.07e-04 5.38e-04 8.49e-04 0.0021

 5 Layers F[N] 0.581 0.643 1.052 3.139

 µ[Nm] 4.95e-04 5.46e-04 8.08e-04 0.0020

 6 Layers F[N] 0.564 0.619 1.045 3.123

 µ[Nm] 4.79e-04 5.22e-04 8.00e-4 0.0020
 7 Layers F[N] 0.577 0.601 1.055 3.117

 µ[Nm] 5.12e-04 5.12e-04 8.12e-04 0.0020
 8 Layers F[N] 0.565 0.609 1.042 3.111

 µ[Nm] 5.24e-04 5.24e-04 8.05e-04 0.0020

Table 1 Neural network tests with different number of layers and different L2 regularization

BATCH
NORMALIZATION

" � à. àÕ " � à. Õ " � Õ " � Õà

 4 Layers F[N] 0.592 0.613 1.083 3.152

 µ[Nm] 4.99e-04 5.11e-04 8.31e-04 0.0021

 5 Layers F[N] 0.571 0.626 1.068 3.137

 µ[Nm] 4.83e-04 5.26e-04 8.2e-04 0.0020

 6 Layers F[N] 0.551 0.599 1.045 3.130

 µ[Nm] 4.70e-04 5.06e-04 8.06e-04 0.0020

 7 Layers F[N] 0.536 0.601 1.039 3.126

 µ[Nm] 4.55e-04 5.02e-04 7.96e-04 0.0020

 8 Layers F[N] 0.532 0.608 1.035 3.117
 µ[Nm] 4.53e-04 5.12e-04 7.94e-04 0.0020

Table 2 Neural Network with different number of layers, Batch normalization before each hidden layer and

regularization on last layer

 122

DROPOUT LAST LAYER HIDDEN LAYER

 4 Layers F[N] 0.616 1.470

 µ[Nm] 5.28e-04 0.0013

 5 Layers F[N] 0.581 1.674
 µ[Nm] 4.95e-04 0.0015

 6 Layers F[N] 0.615 1.884
 µ[Nm] 5.24e-04 0.0015

 7 Layers F[N] 0.578 2.000

 µ[Nm] 4.92e-04 0.0017

 8 Layers F[N] 0.570 2.087

 µ[Nm] 4.83e-04 0.0017

Table 3 Neural Network with different number of layers and dropout applied on last layer or hidden layer

BATCH NORMALIZATION LAST LAYER HIDDEN LAYER

 4 Layers F[N] 0.608 0.562

 µ[Nm] 5.14e-04 4.80e-04

 5 Layers F[N] 0.597 0.538

 µ[Nm] 5.10e-04 4.57e-04

 6 Layers F[N] 0.587 0.541

 µ[Nm] 5.03e-04 4.61e-04

 7 Layers F[N] 0.561 0.540

 µ[Nm] 4.82e-04 4.60e-04

 8 Layers F[N] 0.584 0.542

 µ[Nm] 4.97e-04 4.60e-04

Table 4 Neural Network with different number of layers and batch normalization applied on last layer or

hidden layer

In general regularization has great results on the network. Both Dropout and

Batch Normalization and L2 performs well, but if they are combined together

regularization turns out to be too strong, causing a degradation of the

performance. Performance gets worse when L2 regularization strength becomes

too high (> 1), as expected. Finally, Dropout performance better when the neural

network becomes deeper. The main problem of Dropout and Batch normalization

is that make the training slower.

 123

Chapter 7 Conclusions

In this thesis, we considered the problem of the calibration of a tactile sensor.

Different algorithms for calibration have been adopted, each of them with its pros

and cons. The aim of these few lines is to provide a quick overview on different

approaches used.

 K-NN shows good performances in terms of accuracy and high rate, indeed

for a prediction it needs 0.001� (for a small value of k). K-NN has few

tunable parameters (distance metric, number of neighbours) and it is easy

and fast to train. However, KNN is difficult to interpret and sensitive to

outliers. Furthermore, if data are noisy number of neighbours must be

increased, causing a degradation of the prediction rate of the algorithm.

 Random Forest using regression trees shows very good performances in

terms of accuracy, a rate medium (≈ 42 ªJ) and medium number of

relevant parameters to tune (depth, number of estimators, number of

features, criterion). Furthermore, it is intrinsically robust to noisy data

because it averages outputs of all the trees. However, Random Forest is

difficult to interpret and overfitting can easily occur, but can be limited.

 AdaBoost using regression trees shows performance similar to Random

Forest in terms of accuracy, a low rate -≈ 21 ªJ/ and small number of

relevant parameters to tune(learning rate and loss). However, it is not very

robust to noisy data and outliers.

 Gaussian process for regression shows really good performance in terms

of accuracy but very low rate of prediction -≈ 4 ªJ). Main strength is the

ability to provide uncertainty about a prediction. They need an accurate

calibration of the kernel and it is not straightforward find a good kernel.

Tuning parameters are only kernel parameters (usually length scale and

amplitude). Training for big data needs some modifications as previously

 124

presented. Gaussian processes can deal with noisy data, indeed it is possible

to incorporate noise in the covariance matrix.

 Neural Networks show best performances in terms of accuracy, medium-

high rate -≈ 53 ªJ/. They need a lot of time for training (depending on

the chosen architecture) and have an high number of parameters (layers,

neurons, different types of regularization …). Neural networks are robust

against outliers and noisy data, but above all, they are a universal

approximator.

So, to recap:

 Accuracy Rate Training

Time

Number of

Parameters

Robustness

KNN Medium Very High Low Low Low

Random

Forest

Medium Medium Medium medium High

AdaBoost Medium Low Medium Low Low

Gaussian

Processes

High Very Low High Low High

Neural

Networks

High Medium

High

Very High Very High Very High

Table 5 Recap of different algorithms for calibration

Definitely, Adaboost and KNN are not suitable for the calibration purpose, due

to their low robustness against noisy data and outliers. Gaussian Process are really

slow to predict values and are not suitable for a prediction with a rate of 500 Hz.

Random Forest, among Machine Learning algorithms, is the best choice for its

properties. However, Neural Networks show best results and robustness so they

are the best choice.

 125

7.1 Future Improvements

There are some points that can be improved:

1. Different dimensionality reduction, nonlinear for example.

2. Augmentation of dataset with artificial noisy data or adding new samples

to the existing dataset.

3. Parallel implementation of Random Forest.

4. Variants of Random Forest like Boosting trees.

5. Parallel implementation of Bagging of Gaussian Processes.

6. Faster variants of Gaussian Process (Sparse, MVM, KD-Tree

Approximation …).

7. Bayesian optimization of hyperparameters of the Neural Networks.

 126

REFERENCES

[1] Andrej Karpathy, Convolutional Neural Networks for Visual Recognition.

URL http://cs231n.github.io/

[2] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo.

Robotics: Modelling, Planning and Control, 2010.

[3] Carl Edward Rasmussen, Christopher K. I. Williams. Gaussian Processes

for Machine Learning, 2006.

[4] Christopher M Bishop. Pattern recognition and machine learning, 2006.

[5] David Pardoe, Peter Stone. Boosting for regression transfer, Proceedings

of the 27th International Conference on ICML, pages 863-870, 2014.

[6] G. De Maria, C. Natale, S. Pirozzi. Force/tactile sensor for robotic

applications, Sensors and Actuators A: Physical 175, pages 60–72, 2012.

[7] George documentation. URL https://george.readthedocs.io/en/latest/

[8] Harris Drucker, Improving Regressors using Boosting Techniques, 1997.

[9] Hyun Seok Oh, Gitae Kang, Uikyum Kim, Joon Kyue Seo, Won Suk

You, Hyouk Ryeol Choi. Force/torque sensor calibration method by using

deep-learning in 14th International Conference on Ubiquitous Robots and

Ambient Intelligence (URAI), 2017.

[10] John Mingers. Machine Learning 4, pages 227-243, 1989.

[11] Leo Breiman. Machine Learning 45, pages 5–32, 2001.

[12] Raul Rojas, Neural Networks: A Systematic Introduction, 2013.

[13] Scikit-learn documentation, Nearest Neighbours. URL https://scikit-

learn.org/stable/modules/neighbors.html

[14] Sebastian Ruder, An overview of gradient descent optimization algorithms.

URL http://ruder.io/optimizing-gradient-descent/

[15] Yoav Freund, Robert E. Schapire. A Decision-Theoretic Generalization of

On-Line Learning and an Application to Boosting, Journal of Computer and

System Sciences 55, pages 119-139, 1997.

 127

RINGRAZIAMENTI

A conclusione di questo lavoro di tesi, è doveroso dedicare i miei più sentiti

ringraziamenti alle persone che ho avuto modo di conoscere in questo

importante periodo della mia vita e che mi hanno aiutato a crescere sia dal

punto di vista professionale che umano. È difficile in poche righe ricordare

tutte le persone che, a vario titolo, hanno contribuito a rendere migliore questo

periodo.

Un ringraziamento al mio relatore, il prof. Giuseppe De Maria, per la guida e

per gli insegnamenti profusi in questi anni universitari.

Un ringraziamento sentito per la guida competente e solerte va al Prof. Ciro

Natale. Un ringraziamento per avermi guidato nell’esperienza in Germania,

per avermi fornito tanti consigli utili che mi hanno migliorato umanamente e

professionalmente.

Un ringraziamento doveroso ai miei genitori per avermi supportato in qualsiasi

modo e incoraggiato nel lungo, e tortuoso, percorso universitario. Devo a voi i

miei valori, le mie esperienze e tutto ciò che ora sono. Non esistono parole in

grado di descrivere la mia gratitudine e il mio affetto, spesso celati, nei vostri

confronti.

Un ringraziamento ai miei cugini, ai miei zii, alle mie nonne per avermi

regalato sempre affetto, attenzioni e tante risate durante tutti questi anni.

Grazie per avermi fatto sentire membro di un’unica grande famiglia.

Un ringraziamento ai miei nonni, nonostante la vostra assenza fisica, il vostro

ricordo nel mio cuore è e sarà sempre un tesoro da custodire gelosamente.

 128

Un ringraziamento ai miei amici per le tante risate insieme, le infinite

discussioni calcistiche e i tanti momenti passati insieme.

Un ringraziamento ai miei colleghi universitari, in particolare ai ragazzi del

laboratorio di Robotica, per avermi sempre aiutato nelle difficoltà, per aver

reso più leggere e divertenti le tante ore passate insieme.

