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Chapter 1

Introduction

1.1 Description of the work

The robotic systems of the next decade will be, potentially, a part of ev-
eryday life as our appliances, servants and assistants, as our helpers and
elder-care companions, assisting surgeons in medical operations, intervening
in hazardous or life-critical environments for search and rescue operations,
and operating in field areas like forestry, agriculture, cleaning, mining, freight
transport, construction and demolition, and so on. In this scenario, bringing
a robot to the same manipulation skills as those of human beings is recog-
nized as the crucial issue for transferring the robots from industry to the
service robotics application domain. Several researchers work towards this
objective within the DEXMART project [2]. It attempts to extend a bridge
from research on natural cognition to research on artificial cognition, as it
will primarily contribute to the development of robotic systems endowed with
dexterous and human-aware dual-arm/hand manipulation skills for objects,
operating with a high degree of autonomy in unstructured real-world environ-
ments. The approach followed in the project to pursue this challenging goal
is based on Programming by Demonstration (PbD) strategies, which require
development of original methods for interpretation, learning, and modelling
from the observation of human manipulation at different levels of abstrac-
tion [21]. The adoption of the human observation is becoming more and more
frequent within the imitation learning and programming by demonstration
approaches (PbD) to robot programming. For robotic systems equipped with
anthropomorphic hands, the observation phase is very challenging and no ul-
timate solution exists. In particular the observation of human manipulation
consists of (1) estimation of the hand pose over the time, (2) estimation of
joint angles and (3) measurement of fingertip contact forces.
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Figure 1.1: Architecture of the proposed sensor fusion system

At the state of the art, the observation of the human hand motion dur-
ing the execution of complex manipulation tasks is a very difficult problem,
handled through two main approaches

• optical position measurements based on motion capture systems, which
require many markers and many cameras, for trying to reduce the
marker occlusion phenomenon, very frequent in hand tracking prob-
lems;

• direct angular measurements, which require complex and expensive sen-
sorized gloves.

In this works, a novel architecture, based on sensor fusion of kinetostatic
data, is proposed that overcomes the limitations of the classical systems.
As shown in Fig. 1.1, the system is constituted by a low-level sensor fusion
module that estimates the hand posture and a high-level module that exploits
the knowledge of fingertip contact forces to refine the initial estimation.

The low-level module is in charge to observe human hand motion com-
bining, through a Bayesian senor fusion technique, both the classic approach
described above with a significantly decreased hardware complexity, i.e. using
a small number of markers (typically only three markers per finger) and cam-
eras, and only three low-cost angular sensors per finger, specifically designed
and realized for this purpose. Usually, extracting the joint angles requires a
large number of markers because of the high number of human hand DOFs
(Degrees of Freedom). Currently, commercial software systems require three

9



Figure 1.2: Marker set used in the low-level sensor fusion module for the
entire hand

Figure 1.3: Marker set required by commercial software for two fingers

markers per link for correctly estimating joint angle displacements during a
human manipulation tasks.

Figures 1.2 and 1.3 show the marker sets required by the designed low-
level algorithm and by commercial software for motion capture data process-
ing, respectively. Evidently, the former requires a smaller number of markers
and, most importantly, of cameras. This result has been achieved not only
by exploiting the additional information coming from the data glove, but
also by usefully exploiting the kinematic model of the hand. Basically, the
algorithm is constituted by two steps. The first is devoted to estimate the
constant kinematic parameters exploiting the recursive nature of the open
kinematic chains. The second step consists in estimating the joint angles
through a finger-centralized sensor fusion algorithm which takes into account
also the marker slipping over the glove surface. The approach followed within
the low-level sensor fusion component presents three key innovations:

10



• design and realization of an optoelectronic low-cost data glove;

• development of a method for estimation of the model parameters ex-
ploiting the recursive nature of open kinematic chains;

• development of a method for real-time joint angle tracking though
Bayesian sensor fusion algorithms for nonlinear systems.

Concerning the realization of the low-cost data glove, the optoelectronic tech-
nology has been selected not only for cheapness sake, but also for its typical
interesting properties such as immunity to electromagnetic field, low power
consumption and lightness. The data glove proposed is equipped with sensing
elements whose developments is based on the use of angle-varying radiation
pattern of common LEDs (Light Emitting Diodes) and responsivity pattern
of PDs (PhotoDetectors). The effectiveness and advantages of using a so-
lution that exploits this property of optoelectronic components has already
been shown in [59], [58] and [11], where the measurement of different physical
variables is proposed.

The high-level sensor fusion module aims at improving the observation
of the human hand motion, exploiting the measurements of fingertip contact
forces and a virtual environment. The main idea of the proposed algorithm is
to compare the fingertip contact information, obtained by commercial tactile
sensors, with the contact information computed in a virtual environment,
that reproduces the real one. In case the estimation of the joint angles and
the relative pose between the hand and the object are accurate, the contact
information in the virtual and in the real environment are fitting, i.e the
contact-consistence condition is satisfied. On the other hand, when the two
sources of information are not consistent, a correction of the hand posture
is carried out. The correction is constituted by two steps. The first step
consists in computing, on the basis of the geometry of the grasped object
and of the hand posture, the fingertip position and orientation, such that
the contact-consistence condition is satisfied. The second step finds the pos-
ture of the hand (i.e. position, orientation and joint angles) such that the
end-effectors assume the poses computed in the first step. To tackle this In-
verse Kinematics (IK) problem, a Jacobian-based technique known as CLIK
(Closed Loop Inverse Kinematics) has been used, which is suitable for the
on-line implementation of the correction algorithm ([66], [67], [36]). Since
the starting point of the IK algorithm is given by the data from the sensors,
only a local correction is required and Jacobian based methods, that are fast
to find local minima, are particulary suitable to this application. It is im-
portant to emphasize that in the inverse kinematics algorithm, the hand is
modeled not as five independent kinematic chains, but as a ”kinematic tree”
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with a root and five branches. The root is composed by six 1DoF joints,
describing the pose of the hand in space and the branches are the five serial
chains describing the five fingers. The correction brings two advantages: im-
prove of the accuracy of the hand observation and guarantee of the coherence
between hand posture and measured force in the virtual environment, which
is very important for PbD applications.

In order to correctly tune the parameters of the CLIK algorithm, a study
on the stability of closed loop inverse kinematic algorithms has been carried
out. It provides a convergence analysis of classical inverse kinematics algo-
rithms for redundant robots, whose stability is usually proved only in the
continuous-time domain, thus neglecting limits of the actual implementation
in the discrete-time. Whereas, the convergence analysis carried out in this
work in the discrete-time domain provides a method to find bounds on the
gain of the closed-loop inverse kinematics algorithms in relation to the sam-
pling time. It also provides an estimation of the region of attraction (without
resorting to Lyapunov arguments) i.e. upper bounds on the initial task space
error.

A further result is the development of a novel robot calibration procedure
that uses a motion capture system. This methods exploits the results already
obtained in the hand calibration procedure. The novelty of the procedure
consists in the adoption of an optical motion capture system that allows
a 3D position measurement distributed along the entire kinematic chain,
not only on its end effector. This enables the estimation of the kinematic
parameters in a closed form without the need to resort to any linearisation
of the error function. The robustness of the estimation algorithm against
measurement noise is guaranteed by the adoption of multivariate statistical
methods like the Principal Component Analysis (PCA). The procedure is
intended for robot manufactures, who can adopt it to select the estimated
kinematic parameters, to be used in the control units of the robot for the
computation of both direct and inverse kinematics, for improving the absolute
positioning accuracy of the end effector. Both simulation and experimental
results obtained in the calibration of an actual industrial 6DOF robot are
reported, which confirm the effectiveness of the proposed approach.

1.2 State of the art

1.2.1 Observation of human manipulation

Until now, only few papers have addressed the problems of kinematic model
parameter and joint angle estimation in human complex manipulation tasks;
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none of these papers uses approaches based on the sensor fusion. In [53] a
protocol to determine the link structure of human hand using motion capture
data is proposed. [75] describes a global optimization method for off-line
assessing joint angles in human hand and for calibrating instrumented glove
from motion capture system measurements. The papers [12] and [79] use,
respectively, a deterministic and a stochastic global optimization algorithm
to determine the centers and the axes of rotation for fingers in a simplified
model of the human hand. In [16] an anatomic-based cost metric is proposed
to identify a model of the carpometacarpal joint of the thumb, that is suitable
for measuring mobility. [45] and [13] try to estimate the whole body motion
from the measurement by a Kalman-like approach, but without focusing on
the hand motion. [33] is one of the first works that address the real-time
finger tracking problem; it uses a Kalman approach to track the marker
positions for an augmented reality application. In PbD, visual observation
of fingertip motion has been investigated, e.g. for simple grasps [74]. In
general, complex dexterous manipulation tasks can not be fully observed
due to occlusions of the fingers during manipulation, e.g. in the Visualeyez
system [57]. Additionally, magnetic field trackers can be used to track the
fingertip motion [34] but limit the movability of the human operator. In
contrast, datagloves measure the finger joints directly but are quite noisy
and require a calibration in each demonstration. In [75], a 14DOF dataglove
is calibrated using an infrared tracking system. In [5] a data glove based on
goniometric sensors is described, that is less complex and less expensive than
the most popular commercial ones.

In [33] and [75] methods to track the hand movement in the space are pro-
posed, which elaborate measurements from optical motion capture systems.
Yet, these kind of approaches require many markers and many cameras, due
to the marker occlusion phenomenon and the high number of human hand
DOFs concentrated in a small volume.

Until now, tactile sensors have been used to improve the segmentation of
the sensor data into elementary actions [82] but no qualitative information
about contact points has been used to improve the observation result. In [37],
sixteen values for the phalanxes and abductions and two force measurements
for the thumb and middle finger are measured and a neural network is trained
to reproduce the grasp but the object geometry and the inconsistency of joint
measurements and force measurements is not taken into account.

1.2.2 Inverse kinematics

Inverse kinematics of robotic systems is one of the basic problems in robotics.
It has been addressed and solved in a variety of manners both for non-
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redundant and redundant robots. At the beginning it was addressed by re-
sorting to classical numerical methods, such as Newton-Raphson algorithm
for finding zeros of nonlinear functions [10], [39], or to more general opti-
mization algorithms [80]. Later on it has been solved by inverting differ-
ential kinematics in a closed-loop fashion by viewing the inverse kinemat-
ics problem as a feedback control problem [65, 27], leading to the so-called
CLIK (Closed-Loop Inverse Kinematics) algorithm. More recently, mixed
numerical-analytical approaches have been proposed leading to approximate
solutions [71]. One of the main problems related to inverse kinematics is
the handling of multiple tasks. Task-priority redundancy resolution tech-
niques [51, 55] were proposed to allow the specification of a primary task
that is fulfilled with higher priority with respect to a secondary task. The
same objective has been reached by resorting to a null-space based solution
in [19], whose extension to any number of tasks has been recently presented
in [6], still in the framework of CLIK algorithms. For a comprehensive review,
the reader is referred to [76] and references therein.

The main difficulty in the study of algorithmic solutions to the inverse
kinematics problem, is related to the discrete-time nature of the dynamic
system at hand, combined with its strong nonlinearity, deriving from the
nonlinearity of the kinematics. Very few papers cope with this problem,
e.g. [27],[28] proposed Lyapunov-based arguments to prove stability.

1.3 Benefits and limitation of data fusion

1.3.1 Benefits

The benefits of sensor fusion are both qualitative and quantitative. Qualita-
tive benefits are improved operational performance, extended spatial cover-
age, extended temporal coverage, increased higher probability of correct in-
ference, reduced ambiguity of inference, improved detection, enhanced spatial
resolution, improved system reliability, increased dimensionality [52].

• Robust operational performance: one sensor can contribute information
while other are unavailable, jammed, or lack coverage of a target or
event.

• Extended spatial coverage: one sensor can look where another cannot

• Extended temporal coverage: one sensor can detect/measure an event/target
when another cannot Probability of detection increased
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• Increased confidence: one or more sensors can confirm the same target
or event

• Reduced ambiguity: joint information from multiple sensors reduces
the set of hypotheses about the target or event

• Enhanced spatial resolution: multiple sensors can geometrically form
a synthetic aperture capable of greater resolution than a single sensor
can form.

• Increased dimensionality: a system employing different sensors to ob-
serve different physical phenomena are less vulnerable to disruption.

• Improved system reliability: multiple sensor suites have an inherent
redundancy.

A quantitative aim of sensor fusion is to improve the accuracy of the
observation, e.g. a GPS position determination. An attempt to illustrate
the quantitative benefits of sensor fusion is described in [54]. In the article,
data from N identical sensors are fused to classify an observed phenomenon
following a majority vote rule. The sensors are assumed to be statistically
independent and the a priori probabilities are taken equal to 1

N
. Figure 1.4

plots the increased probability of correct inference when the number of sen-
sors is increased from 5 to 7 (the bottom curve of Fig. 1.4), from 3 to 5
sensors (middle curve) and from 1 to 3 sensors (top curve).

Figure 1.4: Marginal gain in correct classification with addition sensors

The results in [54] provide some conceptual rule of thumb:
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• Combining data from multiple sensors which have probability of correct
detection less than 0.5 does not provide significant advantages.

• Combining data from multiple sensors that have very high probabil-
ity of correct detection, e.g. around 0.95 does not provide significant
advantages

• When N is very large (e.g. greater than 10 sensors) ,adding new iden-
tical sensors does not provide advantages. Adding sensors of other
kinds,a substantial increase of information content may be expected,
depending on fusion objective.

• The greatest marginal improvement in sensor fusion occurs for a moder-
ate number of sensors (i.e. 1 to 7), each having a reasonable probability
of correct identification.

1.3.2 Limitations

In the design of a sensor fusion system is of major importance to consider
the limitations of data fusion; in [25], Hall and Steinberg describe the ”dirty
secrets” of data fusion:

• There is no substitute for a good sensor: no amount of data fusion
can replace the data of a single accurate sensor. For example in a
mechanical system, conditions such as operating speed and vibration
level can give useful information about system operation but they do
not provide estimate of other quantities such as the system operating
temperature

• Downstream processing cannot make up for errors or failures in up-
stream processing: data fusion process cannot correct errors in pre-
processing of individual sensor processing.

• Sensor Fusion can result in poor performance if incorrect information
about performance is used: a common failure of data fusion is to char-
acterize the sensor performance in an ad hoc or convenient way; doing
so, the sensor weight will be set by the fusion algorithms in incorrect
manner.

• There is no such thing as a magic or golden data fusion algorithm:
there is no algorithm optimal in all conditions and often real applica-
tions do not meet the underlying assumptions required by data fusion
algorithms.
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• There will never be enough training data: the needed training data for
pattern recognition algorithm are never sufficient, so hybrid methods
such as model-based methods, syntactical representation, combination
of methods are necessary.

• It is difficult to quantify the value of a data fusion system: a challenge
in data fusion systems is to quantify the utility of system at mission
level, i.e. to understand how the data fusion system performs well in
operational environment.

• Fusion is not a static process: The Data Fusion process is not static
but it is an iterative process which continually seeks to improve the
estimates of a situation observed or a threat environment.

1.4 Bayesian sensor fusion

A nonlinear stochastic system can be defined by a stochastic discrete-time
state space transition equation:

xk = fk(xk−1,wk−1) (1.1)

and the stochastic observation process:

yk = hk(xk, vk) (1.2)

where, at time k, xk is the system state vector, wk is the dynamic noise
vector, yk is the observation vector and vk is the observation noise vector.
The deterministic functions fk and hk link the prior state to the current
state and the current state to the observation vector, respectively.

When yk is the output vector of a redundant number of sensors, a Bayesian
filtering problem becomes a sensor fusion problem. In a Bayesian context,
the problem is to quantify the posterior density p(xk|y1:k) where the ob-
servations are specified by y1:k = {y1,y2, ......,yk}. The above nonlinear
non-Gaussian state-space model, eq. 1.1, specifies the predictive conditional
transition density, p(xk|xk−1,y1:k−1) , of the current state given the previous
state and all previous observations. Also, the observation process equation,
1.2, specifies the likelihood function of the current observation given the cur-
rent state, p(yk|xk). We suppose that the Markov assumption holds, such
as:

p(xk|x1:k−1,y1:k−1) = p(xk|xk−1) (1.3)
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The prior probability, p(xk|y1:k−1) , is defined by Bayes rule as:

p(xk|y1:k−1) =

∫
p(xk|xk−1,y1:k−1)p(xk−1|y1:k−1)dxk−1 (1.4)

Here, the previous posterior density is identified as p(xk−1|y1:k−1) eq. 1.4 is
called prediction step. The correction (or update) step generates the poste-
rior probability density function from:

p(xk|y1:k) = cp(yk|xk)p(xk|y1:k−1) (1.5)

where c is a normalization constant.
The MMSE Bayesian filtering problem is to estimate, in a recursive man-

ner, the first two moments of pdf p(xk|y1:k), using eq. 1.4 and eq. 1.5. That
is, the estimated state at the time k, x̂k will be:

x̂k = E[xk|y1:k] =

∫
xkp(xk|y1:k)dxk (1.6)

But for a general multivariate distribution the integrals 1.4 and 1.6 cannot
be evaluated in closed form, so some form of integration approximation must
be made. In particular we obtain:

1. Kalman Filter (KF) when fk, hk are linear function and vk, wk are
AGWN stochastic variables

2. Extended Kalman Filter when f k, hk are nonlinear function but are
approximated with their first order Taylor series and vk, wk are AGWN
stochastic variables

3. Unscented Kalman Filter when the Unscented Trasform is used in order
to propagate the AGWN variables vk, wk through the deterministic
nonlinear functions f k and hk.

4. Particle Filters when Monte-Carlo-like methods are adopted to resolve
the integrals 1.4 and 1.6, it does not need any restrictive hypothesis on
the pdf of stochastic variables vk, wk.

In [73] and [63] it is possible to find a complete explanation on the ana-
lytical and numerical approximations of the Bayesian filter.
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Chapter 2

Sensing system

2.1 The sensory environment

The measurement system adopted for tracking human hand motions uses
two different types of sensing systems. The first one is a commercial op-
tical motion capture system (see Fig. 2.1). The second one is a sensorized
glove equipped with three angular sensors per finger and with three reflective
markers per finger. Marker positions are measured through a Vicon optical
motion capture system, composed by four CMOS cameras, a workstation and
a host PC, on which a real-time engine and the software for calibration and
management are installed. The workstation is connected to a PC through an
Ethernet cable, with TCP/IP protocol. The data glove has been principally

Figure 2.1: Cameras of the Vicon mocap system

designed to be used in a sensor fusion system and the concept is presented in
Section 2.2. The calibration curve of the sensor can be estimated according
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to the specific procedure described in Section 3.1.2. Both the motion capture
system and the data glove work with a sampling rate of 60Hz. The details
of the approach followed to synchronize the two systems and to avoid inter-
ference of the optoelectronic sensors with the infrared cameras are reported
in Section 2.2.3. In order to measure the fingertip contact forces, commercial
tactile sensors have been placed under the data glove see Fig. 4.3. In each
fingertip, a tactile sensor pad is used to measure the force intensity applied
to an object. Due to the size and location of the pads, the human operator
has to consider the sensor pads and adapt the manipulation motion in order
to make consistent force measurements. An additional palm sensor is avail-
able but has not been used in this work. The system is calibrated using a
provided dynamometer. The repeatability is < 4% of the full scale range,
which is 4.55 to 22.73kg [4].

2.2 Data glove design

2.2.1 Sensing element concept

In the data glove design process, the rotational center of each single joint
of the human hand has been considered fixed in the whole angular range
of the joint (about [0◦, 90◦]). Therefore, the kinematic behavior of a single
joint can be modelled with good approximation as an ideal 1-DOF revolute
joint. As a consequence, it is possible to introduce a simplified geometrical
model of two adjacent phalanges, as illustrated in Fig. 2.2, and define the
joint angle α. The rotational center of the joint is set at the origin O of
a Cartesian coordinate system, in which xOz constitutes the plane of rota-
tion of the phalanges. The proposed angular sensor takes advantage of the

x
y

z

Phalanx A

Phalanx B

Joint

Rotational centre

α

Figure 2.2: Schematics of the two-phalanges simplified mechanical model.
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angle-varying radiation pattern of common LEDs and responsivity pattern
of photodetectors. Consider a single joint of a finger in the rest position
(α = 0◦). A LED and a photodetector are placed respectively on the first
and second phalanx attached to the joint, facing each other with mechanical
axes overlapping. In this state a certain amount of light emitted by the LED
reaches the photodetector and it is proportionally converted into an electrical
current, I0. As the joint starts to flex (α > 0◦), the mechanical axes of the
emitter and of the receiver experience some angular displacement. In this
new condition a different amount of light will be sensed by the photodetec-
tor and converted into a current different from I0. This happens because
the radiation pattern of the LED varies with the observation angle, so that
the receiver detects different values of radiant flux in the two cases. At the
same time also the way the photodetector weighs received light varies, as its
relative position and orientation respect to the source change, according to
its responsivity pattern. The combination of these two effects leads to the
observed variations of the photocurrent.

Being the electrical current of the photodetector variable with the flexure
angle of the joint, it is possible to introduce the function I(α). If I(α)
is a monotonic function of its argument, a measure of its value is uniquely
associated to a value of the angle α. Thus if the power of light emitted by the
LED is kept constant and the photodetector current is measured, the flexure
angle of the joint at every instant can be reconstructed. A LED/photodiode
couple is needed for each joint whose angular displacement has to be detected.
The diagram in Fig. 2.3 recalls the simplified model of a single finger joint
presented in Fig. 2.2, reporting the unique joint angle α and β = α/2, that
will be conveniently used in the following. Figure 2.3 shows that the LED
and the photodetector have a fixed displacement from the axis of the phalanx
to which they are attached. The position of the emitter and the detector can
be specified with respect to the fixed Cartesian coordinate system Oxyz.
The origin O of the system is chosen to coincide with the center of rotation
of the joint, the x-axis overlapping the axes of the phalanges when α = 0◦.
Assuming the devices to lie symmetrically with respect to the z-axis, their
angle-dependent coordinates are (px, pz) for the photodetector and (−px, pz)
for the LED. Their variation with α has been subtended. When the joint is
in its rest position (α = 0◦), it is possible to define px = px0 and pz = pz0.
As α varies both px and pz vary, together with the distance d between the
tips of the LED and photodetector. In particular

d(β) = 2px(β) = 2 [px0 cos(β) + pz0 sin(β)] , (2.1)

which for β = α = 0◦ gives the initial distance between the devices d = d0 =
2px0. The initial positioning of the devices (in terms of px0 and pz0) repre-
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Figure 2.3: Relationship between angles in the geometrical model.

sents a degree of freedom that can be used to alter the d-β characteristic and
in particular its monotonicity, consequently changing the sensitivity of the
sensor. Owing to the symmetry of the considered system, with elementary
geometric considerations on Fig. 2.3, when the joint exhibits a certain bend-
ing angle α, the mechanical axes of both the LED and the photodetector
form an angle β with the x axis. The symmetric positioning of the compo-
nents with respect to the center of rotation of the joint is not a mandatory
condition to have a well working sensor. The choice made here only simplifies
the geometric considerations used to optimize the positioning and the cali-
bration of the sensor. In general the couple LED/photodetector can be used
as an angular displacement sensor also without a symmetric positioning.

At this point, recalling the theory on LED radiation patterns [46], it is
possible to look for a model of the system in order to optimize the design
of the sensor, selecting the initial positioning (px0 and pz0) of the devices.
Fig. 2.4 shows what happens in terms of radiated and received radiant flux
in the two different conditions α = 0◦ and α 6= 0◦. In the picture two new
variables are introduced, θT representing the angle between the LED me-
chanical axis and the segment from the tip of the photodetector to the tip
of the LED, and θR representing the angle between the photodetector me-
chanical axis and the same segment. Both quantities are positively measured
clockwise. According to what was shown above, with reference to Fig. 2.3,
θT is equal to β and θR to −β. If the distance d was large enough to ren-
der the far-field approximation valid, the LED could be regarded as a point
source. In that case the photocurrent I(·) (and thus the received radiant
flux by the photodetector) will be proportional to the product between the
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α = 0◦

α 6= 0◦

d

d0

θT = β

θR = −βI(β)

R(−β)

Figure 2.4: Mutual orientation of the LED source and the photodetector.

radiant intensity pattern of the LED, I(θT ), evaluated in β and the respon-
sivity pattern of the photodetector, R(θR)

1, evaluated in −β, and inversely
proportional to the squared distance d(β)

I(α/2) = I(β) = K
I(β)R(−β)

d2(β)
, (2.2)

where K is a dimensional multiplicative constant. It is evident from 2.2 that
the sensor characteristics, in terms of sensitivity and measurements range,
depend on LED radiant intensity pattern, photodetector responsivity pattern
and relative positioning variations of the components. The two patterns
are available on datasheets of the selected components, while positioning
variations can be derived by simple geometrical considerations.

2.2.2 Sensing element realization

A preliminary testing phase has been performed to select the optoelectronic
components among various commercially available devices. The selection has
been made taking into account the nominal beam angle of the LED and the
acceptance angle of the photodiode so as to guarantee an acceptable sen-
sitivity in the whole angular range of interest. The selected devices used

1the ϕ-dependence of the radiation and responsivity patterns is here omitted since the
devices only move within a plane at constant ϕ.
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Figure 2.5: Schematics of the emitter and receiver circuits for the second
sensor prototype.

for experimental implementation are branded Avago Technologies Inc. and
are spectrally matched with an infrared peak wavelength of 875 nm. Such a
choice in terms of wavelength range guarantees a sufficient robustness against
ambient light. The emitter (manufacturer code number HSDL-4400) is an
AlGaAs flat-top light emitting diode featuring a nominal beam angle of 110◦,
an on-axis radiant intensity of 6mW/sr corresponding to a 100mA maximum
forward current, and a bandwidth of about 7MHz. The detector (manufac-
turer code number HSDL-5420) is a domed PIN photodiode characterized
by a 28◦ acceptance angle and a nominal optical bandwidth of 50MHz. The
emitter and receiver circuit schematics are depicted in Fig. 2.5, where it is
evident that the photocurrent is simply transformed into a voltage, without
any conditioning electronics for signal amplification. An additional elec-
tronics can be used to improve the robustness with respect to noise and
disturbances.

In order to fix the initial positioning of the components a mold resin
has been prepared and used to achieve a form of elastic material with the
two devices integrated within it, as shown in Fig. 2.6. The elastic layer has
been realized using a two component room temperature condensation curing
silicone compound (MM906 produced by ACC Silicones). The cured silicone
is an exceptionally flexible rubber with very high mechanical properties and
good shelf life stability. This integration guarantees that the two devices
are facing each other with mechanical axes overlapped, when no angular
displacement is applied to the sensing element. The selection of a material
with an high elasticity and a low hysteresis is fundamental to obtain a sensing
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Figure 2.6: Drawings of a sensing element: top view (a) and lateral view (b).

Figure 2.7: Picture of a single sensing element.

element with a good measurement repeatability. After the realization of a
sensing element, another important point has been the bonding of the sensing
element to the neoprene glove. The elasticity of the glove implies that the
angular variation of a single joint of the human hand produces the strain of
the glove also in areas different from than directly affected by the angular
motion. Clearly, the elastic layer with the two devices integrated within it,
if directly bonded to the glove, is sensitive to this strain. Therefore a thin
plastic layer has to be inserted between the elastic layer and the glove as
shown in Fig. 2.6. This thin plastic layer, for each joint, allows the transfer
from the human hand to the elastic layer of the angular displacement but
not of the strain. The use of a sensing element constituted by an elastic layer
and a thin plastic layer avoids coupling problems caused by glove elasticity
for measurements of neighboring joints. The Fig. 2.7 shown a picture of a
realized sensing element bonded to the glove.
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Figure 2.8: Picture of the data glove prototype with angular sensors and
markers used for motion capture system.

2.2.3 The sensorized glove

A prototype of a data glove has been realized installing sensing elements on
the joints of a commercial neoprene glove. The Fig. 2.8 shows a picture of
the realized prototype. Figure 2.9 reports typical measured voltages for all
index finger joints in a simple pick and place task. In order to calibrate
the data glove, a recursive inverse kinematic algorithm has been used. It
elaborates measurements from a motion capture system and exploits the
recursive nature of the open kinematic chains to calculate the joint angles.
From the user point of view, a calibration session consists of observing, by
an optical motion capture system, repeated flexion-extension motion of all
the fingers. It is important to underline that the result of the calibration
procedure depends on the shape and dimension of the user’s hand. Then,
for a different performer, a new calibration procedure is required. A first,
but not accurate enough, version of the calibration algorithm can be found
in [64].

Figures 2.10, 2.11, 2.12 report examples of calibration curves for the index
finger joints of the data glove prototype, , which have been obtained through
the calibration procedure described in Section 3.1.2. Obviously, the range
of angular motion is different for each joint and also the sensitivity. It is
important to underline that the voltages reported in Figures. 2.10, 2.11, 2.12
have been obtained using the voltages V0 as reported in Fig. 2.5, without any
conditioning electronics for signal amplification.
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Figure 2.9: Typical measured voltages on joints pointed out in Fig. 2.8 for a
pick and place task.

2.2.4 Synchronization with cameras

The combined use of the proposed joint angle sensors and the motion cap-
ture system needs the design of a suitable conditioning electronics in order
to synchronize the data captured by the two different systems. Since the
presented optical sensors work in the same wavelength range of the motion
capture system, the conditioning electronics must also handle the problem
of optical interference between the two measuring systems: the PDs used
for the angular sensors realization are sensitive to strobes of the cameras
and as a consequence the measurements of the joint angles may be wrong
if the sampling occurs while the strobes are turned on; the CMOS cam-
eras of the motion capture system are sensitive to light emitted by LEDs
and so the LEDs can be confused with the markers. The optical interfer-
ence and synchronization problems have been tackled and solved with the
same conditioning electronics. The basic idea is to alternate the operation of
two systems, so that the angular sensors are switched off when the cameras
capture the markers and the angle measurements occur when the camera
strobes are switched off. The scheme of the conditioning electronics is re-
ported in Fig. 2.14 and the corresponding timing of the procedure is reported
in Fig. 2.14. The input signal from the motion capture system is constituted
by impulses of known length ∆ with a frequency f = 1/T , where f is the
working frequency of the capture system (typically f = 60Hz). The marker
positions are captured with a frequency f for each instant t0 that coincides
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Figure 2.10: Calibration curves of joint 1 for a single finger as reported in
Fig. 2.8.

with the center of the time interval ∆. The camera strobes are switched on
for a known time τ > ∆, centered with respect to the t0 instants, in order
to ensure the optimal illumination during the capture. The microcontroller,
on the basis of the input signal, generates the driving signal for angular sen-
sors which is low when the strobes are switched on and is high otherwise.
This signal is used as reference for the power amplifier that provides power
supply for LEDs and PDs. Using this driving signal, the optical interference
between the two systems is avoided. The microcontroller also manages via
SPI (Serial Peripheral Interface) an A/D converter where the output sig-
nals of PDs are connected. The microcontroller captures the PD signals at
sampling instant ts, delayed with respect to t0, so that LEDs and PDs are
working and strobes are switched off. Since each instant ts is calculated with
respect to the previous impulse ∆, generated by the motion capture system,
the synchronization of the angular sensor data is automatically satisfied with
a sampling frequency f .
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Figure 2.11: Calibration curves of joint 2 for a single finger as reported in
Fig. 2.8.
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Figure 2.12: Calibration curves of joint 3 for a single finger as reported in
Fig. 2.8.
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Chapter 3

Low-level sensor fusion

The low-level sensor fusion module is in charge of estimating the hand posture
through the fusion of angular sensor voltages and marker positions from the
motion capture system. In order to properly work, it requires the calibration
of the human hand model and the calibration of the angular sensors placed
on the sensorized glove. The calibrated hand model is also exploited within
the high-level sensor fusion module, described in Chapter 4.

3.1 Hand model and calibration

In order to reconstruct the motion of the human hand, a kinematic model
has to be selected. Then, its parameters have to be estimated, including the
joint angles necessary to animate the model.

3.1.1 Model definition

A universally recognized as an accurate model of the human hand is the one
proposed in [60], which allows to describe also palm arching movements. A
simplified version of the model is adopted in this work assuming a rigid palm.
In detail, for each finger, the selected 4−DoF kinematic model is depicted
in Fig. 3.1, where also the markers attached to each bone are reported. The
above kinematic model assumes that the first two joints of each finger are
two consecutive pin joints with orthogonal axes. Another key assumption
of the adopted kinematic model is that the flexion axes of each finger are
all aligned. The method adopted to define the kinematic model, i.e. the
relationship between the joint angles and the fingertip poses, is the so-called
Denavit-Hartenberg technique [29], which is widely used both in robotics
and biomechanics. The reader unfamiliar with this method can refer to,
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link a d ϑ α
1 0 0 ϑ1

π
2

2 a2 0 ϑ2 0
3 a3 0 ϑ3 0
4 a4 0 ϑ4 0

Table 3.1: D-H table for all the fingers.

 index

ϑ1

ϑ2

ϑ3

ϑ4

m1

m2

m3

Figure 3.1: Kinematic model and marker set for one finger

e.g., [67]. The resulting Denavit-Hartenberg (D-H) parameter table is the
one in Tab. 3.5. The D-H reference frames fixed to the links of the finger
are depicted in Fig. 3.2, together with two intermediate frames used in the
calibration algorithm.

3.1.2 Model and angular sensor calibration

In order to apply the Bayesian sensor fusion technique, two calibration steps
are needed

1. calibration of the hand model

2. calibration of angular sensors

The calibration of the hand model consists of calculating, for each finger,
the D-H parameter a2, a3, a4 and the pose of the D-H frame 0 with respect
to the palm-fixed frame w.
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Figure 3.2: D-H frames and markers attached to the finger

The calibration of an angular sensor consists of estimating the relation
between the sensor output voltage v and the joint angle ϑ. Due to mounting
constraints, the angular sensors can be installed only on the joints 2, 3, 4 of
each finger. For both hand model and angular sensor calibration, the motion
capture system is used. In a special calibration session, the user has to per-
form repeated motions of all the fingers trying to avoid abduction/adduction
movements and to minimize marker occlusions. This ensures that the three
markers on each finger move on parallel planes, thus allowing robust esti-
mation of the parallel joint axes. The estimation of parallel joint axes is
performed by the Principal Component Analysis (PCA).

In general, the central idea of PCA is to transform a p-dimensional data
set Dp into a m-dimensional data set Dm, with m < p, losing as little infor-
mation as possible.

Suppose that x is a vector of p random variables. The variance and co-
variance of x are of interest. More in details, the problem of PCA consists
of looking for a few (≪ p) derived variables that preserve most of the infor-
mation given by variance and covariance of x. The first step is to look for a
linear function aT

1 x of the elements of x having maximum variance, where ai

is a vector of p constants a11, a12, ..., a1p. The next step is to look for a linear
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Figure 3.3: Data glove prototype

function aT
2 x uncorrelated with aT

1 x having maximum variance, and so on,
so that at the k-th stage a linear function aT

kx is found that has maximum
variance subject to being uncorrelated with aT

1 x, a
T
2 x, ..., a

T
k−1x. The k-th

derived variable, aT
kx is the k-th Principal Component (PC). Up to p PCs

could be found, but it is hoped, in general, that most of the variation in x
will be accounted for by m PCs, where m≪ p. If so, the data set Dp can be
well approximated with the new data set Dm. In fact, if a set of p variables
has substantial correlations among them, then the first few PCs will account
for most of the variation in the original variables. Conversely, the last few
PCs identify directions in which there is very little variation; that is, they
identify near constant linear relationship among the original variables. PCA
is theoretically the optimum transform for a given data in least square terms.
PCA involves the calculation of the eigenvalue decomposition of a data co-
variance matrix or singular value decomposition of a data matrix, usually
after mean centering the data for each attribute. For a data matrix, X , with
zero empirical mean (the empirical mean of the distribution has been sub-
tracted from the data set), where each row represents a different repetition
of the experiment, and each column gives the results from a particular probe,
the PCA transformation is given by:

Y = XV = UΣ

where V −1UΣ is the singular value decomposition of X . For a complete and
detailed coverage on Principal Component Analysis, [44] is a good reference.
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Finger a2 [mm] a3 [mm] a4 [mm]
Thumb 49.13 31.79 24.11
Index 45.02 25.53 20.47

Medium 50.07 29.64 19.16
Ring 48.40 22.42 20.92
Little 34.20 19.18 16.98

Table 3.2: Estimated kinematic parameters of the hand model

Finger cwx [mm] cwy [mm] cwz [mm]

Thumb −11.84 13.96 32.24
Index −7.902 −30.54 20.05

Medium 13.76 −27.27 21.60
Ring 34.32 −18.46 25.65
Little 52.37 −8.864 30.36

Table 3.3: Estimated position of each finger with respect to the palm-fixed
frame w

In this work, the PCA is carried out on the data set consisting of the
marker position, observed in a coordinate system fixed to the hand, during
the calibration movement. The first two PCs identify the set of planes in
which the markers move, while the third PC is the flexion axes, that is also
the direction in which the variance of the data is minimum. In order to obtain
a more noise-robust estimation, the PCA has been performed not only with
one marker, but using all the markers placed on the finger.

After estimating the flexion axes, the direction of the adduction/abduction
ones will be established according to the D-H convention.

Note that, for simplicity, the calibration procedure for only one finger will
be described in the following. On the hand dorsum, three markers l, r, u, are
displaced to define a reference system fixed to the hand and three markers,
m1, m2, m3 are displaced on each finger (see Fig. 3.3). Each marker mi is
fixed on the finger phalanx i.

In order to calibrate the angular sensors and the hand model, the fol-
lowing steps are performed (for a detailed description of the algorithm see
Section 3.1.3):

1. for each time-frame, transformation of all the marker coordinates in
a coordinate system Ow − xwywzw, fixed on the hand dorsum (see
Fig. 3.3). In such a coordinate system, the marker m1 moves along a
circumference C1
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Finger φ [deg] ϑ [deg] ψ [deg]
Thumb 51.20 52.61 −176.8
Index 9.099 5.442 −74.36

Medium 8.384 3.878 −71.77
Ring 10.82 3.833 −71.16
Little 9.462 2.733 −69.82

Table 3.4: Estimated orientation of the fingers with respect to the palm-fixed
frame w expressed in RPY angles

2. use of the Principal Component Analysis (PCA) to reduce the 3D prob-
lem to a 2D problem (see Fig. 3.2). Through the PCA algorithm, a
new coordinate system Op − xpypzp is defined, in which the marker
trajectories not only lie in parallel planes, but have also the minimum
variance along the zp axis.

3. estimation, using a 2D LMS methods, of the center c1 of circumference
C1 expressed in the coordinate system p. c1 is supposed to be the
position of the first finger joint

4. estimation of the second joint position c2. In the coordinate system
fixed on the first link and having c1 as a origin, c1 − x2′y2′z2′ , the
marker m2 moves along a circumference C2 with c2 as a center.

5. estimation, analogously, of the position and orientation of all the other
hand joints. The position of the joint i is the center of rotation of
the circumference i and the axis of rotation of the joint i, i = 2, 3, 4 is
normal to the plane xpyp

6. computation of the DH parameters ai as the distance of consecutive
centers of rotation

7. computation of the joint angles and calibration curves of the angular
sensors

8. computation of all the other parameters required by the algorithm for
joint angle estimation (see Section 3.2 for more details)

Once the calibration curves of joint angular sensors have been constructed
through the estimated angles ϑ2(k), ϑ3(k), ϑ4(k), polynomial interpolators
are adopted to obtain an analytic expression to be used in the sensor fusion
algorithm (see Fig. 2.10, 2.11, 2.12). The procedure described above for
computing ϑ2(k), ϑ3(k), ϑ4(k) will be hereafter called RIK (Recursive Inverse
Kinematics).
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3.1.3 Details of the calibration algorithm

The section describes in details the algorithm for the hand model and joint
angular sensors calibration.

The first step for hand and angular sensor calibration is to define the
dorsum-fixed frame w. Such frame is chosen on the basis of the three markers
fixed to the hand dorsum (the ochre markers in Fig. 1.2) whose pose with
respect to the base frame b is represented by the matrix T w

b (k), at the k-th
frame, defined as

T b
w(k) =

[
Rb

w(k) ob
w(k)

0T 1

]
(3.1)

where

ob
w(k) = rb

l (k)

Rb
w(k) = [ x̂b

w(k) ŷb
w(k) ẑb

w(k) ],

being

x̂b
w(k) =

rb
r(k)−rb

l (k)

‖rb
r(k)−rb

l (k)‖

ẑb
w(k) =

( a(k) b(k) c(k) )T

‖( a(k) b(k) c(k) )‖

ŷb
w(k) = ẑb

w(k)× x̂b
w(k)

,

where ẑw is the unit vector normal to the plane defined by the ochre markers

with coordinates rb
l =

[
rlx rly rlz

]T
, rb

r =
[
rrx rry rrz

]T
, rb

u =
[
rux

ruy
ruz

]T
,

and a(k), b(k), c(k) are the components of a vector normal to this plane com-
puted at the k-th frame as

a(k) = det

[
rry − rly rrz − rlz
ruy

− rly ruz
− rlz

]
(3.2)

b(k) = − det

[
rrx − rlx rrz − rlz
rux

− rlx ruz
− rlz

]
(3.3)

c(k) = det

[
rrx − rlx rry − rly
rux

− rlx ruy
− rly

]
. (3.4)

The marker positions are expressed in the local coordinate system Ow −
xwywzw through the homogenous transformation (3.1) applied to the homo-
geneous coordinates of each marker, i.e.

m̃w
j (k) = T w

b (k)m̃
b
j(k) j = 1, 2, 3, (3.5)

where k = 1, 2, ....,M is the time frame number and m̃w
j = (mw

jx
mw

jy
mw

jz
1)T

are the homogenous coordinates of the j-th marker referred to frame w de-
fined in (3.1).
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Since during the calibration movement all the markers of a finger move
on parallel planes, using Principal Component Analysis [44] it is possible to
define a reference frame Op − xpypzp in which the marker coordinates have
significant variations only along x and y, while along z are approximately
constant. Let Rp

w be the rotation matrix from Op−xpypzp to Ow−xwywzw

and pca the algorithm that returns the matrix Rw
p = (Rp

w)
T , it is

m̃
p
j = T p

wm̃
w
j j = 1, 2, 3, (3.6)

where

T p
w =

[
RwT

p 0
0T 1

]

Rw
p = pca({mw

1 (k) : k = 1, 2, ...,M}).
(3.7)

In the Op −xpypzp reference frame the marker m1 moves along a circumfer-
ence with centre c1 and radius r1. Through a classical least square method
it is possible to estimate c

p
1 and r1 (see, for example, [72], [61], [23]. Let

circle be the algorithm which has in input the movement of a marker mi

in the reference system Oi − xiyizi and in output the centre of rotation in
the same coordinate system ci and the radius ri, then the center of rotation
of the first joint is estimated as

(cp1, r1) = circle({mp
1(k) : k = 1, 2, ...,M}). (3.8)

Now, the second and third centers of rotation can be estimated according
to the procedure below applied to all the time frames k = 1, . . . ,M . The
procedure exploits the fact that both the frame Oi − xiyizi and the frame
Oi′ − xi′yi′zi′ are fixed to the link i, in particular the axis xi′ has the same
direction of the segment joining the center of rotation ci and the marker mi
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(see again Fig. 3.2).

x̂
p
2′(k) =

m
p
1(k)− c

p
1

‖mp
1(k)− c

p
1‖

(3.9)

ẑ
p

2′(k) =
(
0 0 1

)T
(3.10)

ŷ
p
2′(k) = ẑ

p
2′(k)× x̂

p
2′(k) (3.11)

R
p
2′(k) =

(
x̂
p

2′ ŷ
p

2′ ẑ
p

2′

)
(3.12)

T 2′

p (k) =

(
R

pT

2′ (k) −R
pT

2′ (k)c
p
1

0T 1

)
(3.13)

m̃2′

j (k) = T 2′

p m
p
j(k) j = 1, 2, 3 (3.14)

(c2
′

2 , r2) = circle({m2′

2 : k = 1, 2, ...,M}) (3.15)

ϑ̄2 = atan2(eT
2 c

2′

2 , e
T
1 c

2′

2 ) (3.16)

T 2
2′ =

(
Rz(ϑ̄2) −Rz(ϑ̄2)c

2′

2

0T 1

)
(3.17)

m̃2
j = T 2

2′m̃
2′

j j = 2, 3 (3.18)

x̂2
3′(k) =

m2
2(k)

‖m2
2(k)‖

(3.19)

ẑ2
3′(k) =

(
0 0 1

)T
(3.20)

ŷ2
3′(k) = ẑ2

3′(k)× x̂2
3′(k) (3.21)

R2
3′(k) =

(
x̂2
3′ ŷ2

3′ ẑ2
3′

)
(3.22)

T 3′

2 (k) =

(
R2T

3′ (k) 0
0T 1

)
(3.23)

m̃3′

3 (k) = T 3′

2 (k)m̃
2
3(k) (3.24)

(c3
′

3 , r3) = circle({m3′

3 : k = 1, 2, ...,M}) (3.25)

ϑ̄3 = atan2(eT
2 c

3′

3 , e
T
1 c

3′

3 ) (3.26)

T 3
3′ =

(
Rz(ϑ̄3) −Rz(ϑ̄3)c

3′

3

0T 1

)
(3.27)

The relations (3.9)–(3.14) are used to express the pose of the frame 2′ with
respect to the frame p and to refer the coordinates of the markers to the frame
2′. Equation (3.15) estimates the second center of rotation. Relations (3.16)–
(3.17) are aimed at aligning frame 2′ with frame 2. Equation (3.18) is needed
to express markersm2 andm3 with respect to frame 2, while relations (3.19)–
(3.23) estimate the pose of frame 3′. Equation (3.24) expresses marker m3

in frame 3′, while equation (3.25) estimates the third center of rotation. The
last two equations (3.26)–(3.27) align frame 3′ with frame 3.
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Now all the kinematic model parameters can be computed, namely the
link lengths and the coordinates of the markers in the plane of the finger
structure, as

a2 = ‖c2′2 ‖ (3.28)

a3 = ‖c3′3 ‖ (3.29)

a4 = r3 (3.30)
(
l1 h1

)T
=

(
eT
1m

2
1 eT

2m
2
1

)T
(3.31)

(
l2 h2

)T
=

(
eT
1m

3
2 eT

2m
3
2

)T
(3.32)

Note that, with respect to any frame with the z axis aligned with zp, the
z coordinates are assumed zero since for the determination of joint angles
corresponding to flexion movements only x and y coordinates are needed
and during the calibration session it is supposed ϑ1(k) = 0, ∀k. This implies
that the calibration hand movement has to be performed without moving
the abduction DOF. The estimated x and y coordinates of the markers are
denoted with (li, hi).

Note that, to avoid the necessity to perform also abduction movements
which are characterized by small ranges of motion, it is assumed that, when
the finger is completely extended, the angle ϑ2 is 0, therefore the abduction
axis is orthogonal both to the axis z1 of joint 2 and to the axis x2, which is
aligned with x1 in such a configuration (see Fig. 3.2). This means that the
relative position and orientation of frame 1 with respect to frame p is given
by

T
p
1(k) = T

p
1(1) =

[
R

p
2′(1)R

2′

2 c
p
1

0T 1

]
, ∀ k (3.33)

where the assumption that ϑ1 is always 0 has been taken into account.

3.2 Fusion algorithm design

Since the motion capture system presents the problem of marker occlusion
and the angular sensors are less accurate and can not be applied to all the
hand DOFs, the sensor fusion seems to be the best approach to tackle the
problem of the real-time observation of human manipulation. The first step
to deal with a Bayesian sensor fusion problem is defining a stochastic model
of the system. Then, with the aid of computer simulations, an EKF-based
sensor fusion algorithm has been designed.
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3.2.1 System modeling

To limit the notation complexity, the algorithm will be presented for a single
finger. Firstly, define a state-space model of the system with state vector

x =
(
ϑ ϑ̇ l h

)T
(3.34)

being

ϑ =
(
ϑ1 ϑ2 ϑ3 ϑ4

)T
(3.35)

ϑ̇ =
(
ϑ̇1 ϑ̇2 ϑ̇3 ϑ̇4

)T
(3.36)

l =
(
l1 l2

)T
(3.37)

h =
(
h1 h2

)T
(3.38)

where (l1, h1) and (l2, h2) are the (x, y) coordinates of markers m1 and m2 in
the frames c2−x2y2z2 and c3−x3y3z3 respectively and have been considered
as state variables to be estimated, instead of system parameters, to take into
account the sliding of the markers with respect to the finger bones.

As usual in tracking problems tackled via state estimation techniques, in
the state update model, the joint variables to be tracked are assumed to vary
with a constant velocity, while the unknown parameters are assumed to be
constant. Hence the state update equations are

ϑk+1 = ϑk + ϑ̇k∆t+wϑ
k

ϑ̇k+1 = ϑ̇k +wϑ̇
k (3.39)

lk+1 = lk +wl
k

hk+1 = hk +wh
k

with ∆t the sampling time of the filter, chosen as the minimum of the sam-
pling times of the sensors, in case the sensors have different sampling rates.

It is easy to see that Eq. (3.39) is linear, then it can be written in matrix
form as

xk+1 = Fxk +wk (3.40)

where

F =




I4 ∆tI4 04

04 I4 04

04 04 I4


 , (3.41)

and

wk =
[
(wϑ

k)
T

(wϑ̇
k)

T
(wl

k)
T

(wh
k
)T
]T

(3.42)
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is a 12×1 vector of stochastic processes. The hypothesis under the Kalman-
like filters is that nk and wk are additive Gaussian white noise (AGWN). The
measurement equation is

yk =




mb
1(xk)

mb
2(xk)

mb
3(xk)

v2(xk)
v3(xk)
v4(xk)



+ nk , h(xk) + nk (3.43)

where vi(x) is the voltage measured by the angular sensor applied to i-th
joint and its analytic expression has been determined in Section 3.1.2. The
marker positions with respect to the D-H frame 0 are computed as

m̃b
1 = T b

w(k)T
w
p T

p
0T

0
2(k)m̃

2
1 (3.44)

m̃b
2 = T b

w(k)T
w
p T

p
0T

0
3(k)m̃

3
2 (3.45)

m̃b
3 = T b

w(k)T
w
p T

p
0T

0
4(k)m̃

4
3 (3.46)

where T b
w(k) is computed as in Eq. (3.1), T w

p as in Eq. (3.7), T i−1
i (k), i =

0, 1, 2, 3, 4 are the D-H transformations, T p
0 can be computed as

T p
o = T

p
1(1)

[
Rx(π/2) 0

0T 1

]
,

being T
p
1(1) the constant matrix calculated in Eq. (3.33) during the calibra-

tion phase, and, by definition,

m̃2
1 =

(
l1 h1 0 1

)

m̃3
2 =

(
l2 h2 0 1

)

m̃4
3 =

(
0 0 0 1

)
.

According to the Kalman filter framework, state variables are assumed
to be Gaussian stochastic processes, with zero mean and diagonal covari-
ance matrix, set by aid of computer simulations. The hypothesis of Gaussian
pdf measurement error, on which the Kalman-like filters are based, is a re-
strictive hypothesis, since the measurement model is strongly nonlinear and
the angular sensor characteristics may be not accurate. An improvement
of filter performance can be obtained through more complex filtering tech-
niques like particle filters [63], which allow to estimate effectively the state
of nonlinear systems even if the noise pdf is not Gaussian. The aim of the
Extended Kalman Filter is to track joint angular positions and velocities
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in a way robust to occlusions and marker slipping phenomena. Occlusion
marker problem is handled by fusion of camera measurements and angular
sensors measurements; the sensor fusion algorithms improve the measure-
ment system robustness, since one sensor can contribute information while
others are unavailable, jammed, or lack coverage of a target or event. The
marker slipping phenomenon is handled by inserting in the state vector the
marker positions expressed in the reference frames fixed to the finger links,
hence they are estimated by the Extended Kalman Filter as well. To model
a system for filtering or data fusion purposes it is very important to evaluate
the variance of measurement errors. If the error variance of the sensors is
badly evaluated, the sensor fusion algorithm may become ineffective. It is as-
sumed that the measurement noises are independent from each other, hence
the covariance matrix is assumed diagonal. The experimentally estimated
variances of camera measurement noises are

σ2
m1

= 9 · 10−6 m2

σ2
m2

= 9 · 10−6 m2

σ2
m3

= 9 · 10−6 m2
(3.47)

assumed equal in all the directions. Whereas, the experimentally estimated
variances of angular sensor noises are

σ2
v2

= 3.5 · 10−5 V2

σ2
v3

= 4.7 · 10−5 V2

σ2
v4

= 2.3 · 10−5 V2
(3.48)

3.2.2 Filter design

Whenever a marker is occluded, the model of the system changes, then also
the sensor fusion algorithm parameters have to change in order to estimate
effectively the joint angles. The whole system is then modelled as a switching
nonlinear system, in which each state of a finite state machine matches a
nonlinear set of differential equations describing the system. The state of
the finite state machine is represented by the variable Sijk, where i, j, k are
equal to zero if the marker m1, m2, m3, respectively, is not occluded and
they are equal to one otherwise. As a consequence, to cope with the problem
of marker occlusion, a switching EKF (SEKF) has been proposed. When no
marker occlusion occurs, i.e. when the system is in the state S000, we can
design the Extended Kalman Filter by setting the covariance measurement
matrix Q as a diagonal 12×12 matrix, having measurement noise covariance
as diagonal element

Q = diag{σ2
m1

I3, σ
2
m2

I3, σ
2
m3

I3, σ
2
v2
, σ2

v3
, σ2

v4
}. (3.49)
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Instead, it is more difficult to choose the model covariance matrix V ; the
simplest method, adopted here, is to set the model covariance matrix as a
diagonal matrix, i.e. to assume that the process modelling errors are mutu-
ally independent. In [63] a set of empirical and semi-empirical methods for
selecting the V matrix entries are described, , while [56] proposes a method
which ensures convergence of the filter. The entries have been set through the
aid of computer simulations; the rule of thumb most frequently adopted for
tuning the V matrix is that decreasing the value of its elements, implies that
the filter “bandwidth” decreases and the measurement noise is attenuated;
increasing the values of V entries, process modelling error is attenuated and
the filter “bandwidth” increases. The performed simulations show that the
filter presents good performance when V is set as

V = diag{5 · 10−8, 5 · 10−8, 1 · 10−7, 1 · 10−6, 5 · 10−8, 5 · 10−8,
10−6, 10−7, 5 · 10−11, 10−11, 10−11, 10−11}

Read yk

Set i = 1

yk(i) = ŷk(i)

V ii ← 0.1V ii

Qii ← 10Qii

yk(i) = NaN
i← i+ 1

k ← k + 1

i = 12

EKF(yk)

Set V as in (3.50)

Set Qas in (3.49)

yes

yes

no

no

Figure 3.4: Flowchart of the switching EKF
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In presence of marker occlusions (i.e. when the finite state machine is not
in state S000), the filter receives in input the value NaN. Computer simulation
has been used also to tune the filter in presence of occlusions, by using
a circular movement in 2D space. It is important to specify that in the
general case of a movement in 3D space, since no abduction angular sensor
is present, measurement of ϑ1 is not possible and thus accurate tracking
of the finger abduction movement is not possible in presence of permanent
occlusion. The algorithm to switch from an EKF model to another is based
on camera measurement observations. In detail, when ymi

k = NaN, the filter
sets

ymi

k = ŷmi

k ,

where ymi

k is the vector containing the components of yk corresponding to
marker mi and ŷmi

k is its estimate computed by taking the same components
of the vector h(x̂k−1) in (3.43), with x̂k−1 the estimated state at step k − 1.
Moreover, since the angular sensor measurements are less reliable than the
camera measurements, the model covariance matrix is modified as

V mi

occlusion = 0.1 · V mi , (3.50)

Qmi

occlusion = 10 ·Qmi , (3.51)

where V mi

occlusion and Qmi

occlusion are the sub-matrices of V occlusion and Qocclusion

containing the elements corresponding to the occluded marker mi, being
V occlusion and Qocclusion the model and the measurement covariance matrices,
respectively, when an occlusion happens. Whereas, V mi and Qmi are the
sub-matrices of V and Q which contain the elements corresponding to the
marker mi when the marker is not occluded. The algorithm flow chart is
sketched in Fig. 3.4.

Simulation Results

To test the filter, the Simulink model in Fig. 3.5 was used. The main sub-
systems of the model are

• Motion Planner: it generates a planar circular finger movement in the
operational space, in this case the trajectory of the marker m3 placed
on the finger tip.

• Inverse Kinematics: it computes the angular joint variable trajecto-
ries ϑ2, ϑ3, ϑ4 from the positions in the Cartesian space of m3. The
trajectory ϑ1 is generated by the block thetar.

• Block thetar: it generates the trajectory of abduction joint ϑ1
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Figure 3.5: Simulink block scheme for evaluating the performance of EKF

• Measurement Generator: it generates, from the vector
(
ϑ1 ϑ2 ϑ3 ϑ4

)
,

the simulated noisy measurements of cameras and of angular sensors,
at frequencies of 60Hz and 240Hz respectively.

• EXTKALMAN: it implements the switching EKF designed, which, from the
voltage values of angular sensors and marker positions from the cam-
eras, computes the estimated joint angular positions. The EXTKALMAN

block has been implemented by using the Embedded Matlab Toolbox1.

Simulations have been performed in the following three case studies, set-
ting the filter initial conditions to a random value

1. Observation without marker occlusion. Figure 3.6, showing true
and estimated joint angles, demonstrates that the filter correctly esti-
mates the variables in presence of noise. Figure 3.7 reports also the es-
timated joint velocities even without any direct velocity measurement.
Figure 3.8 reports the estimated marker positions with respect to the
frames fixed to the corresponding links. The filter usefully exploits the
available measurements (see Fig. 3.13) to estimate quite satisfactorily
the slipping motion.

2. Observation with periodic occlusion of markers m1 and m3.
Figure 3.9 shows the true and estimated joint angles when a periodic
occlusion lasting for 250ms affects both the markers m1 and m3. In
spite of the long lasting occlusions, the filter is still able to reconstruct

1Embedded MATLAB is a subset of the MATLAB language that allows to generate
production quality C code for embedded applications; it restricts MATLAB semantics to
meet the memory and data type requirements of embedded target environments.
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Figure 3.7: Estimated joint velocities (without marker occlusion)
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Figure 3.8: Marker slipping without marker occlusion

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
−2

−1.5

−1

−0.5

0

0.5

1

time [s]

[r
ad

]

 

 
ϑ2

ϑ3

ϑ4

ϑ1

ϑ̂2

ϑ̂3

ϑ̂4

ϑ̂1

occlusion occlusion occlusion occlusion occlusion occlusion

Figure 3.9: True and estimated joint angles with m1 and m3 periodically
occluded
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Figure 3.10: True and estimated marker slipping with m1 and m3 periodic
occlusion
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Figure 3.11: True and estimated angular joint positions in presence of peri-
odical simultaneous occlusions of all markers
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Figure 3.12: Marker positions measured by cameras with periodic occlusion
of the markers m1 and m3.
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quite accurately the joint angles. Figure 3.10 reports the estimated
marker slipping motion and it is evident how the performance of the
filter is worse than in the previous case study since the information on
the marker position resides only in the camera measurements, which
are reported in Fig. 3.12. Nevertheless, owing to the dynamic nature
of the filter, the estimated position, kept constant during occlusions,
tracks the actual position as soon as the occlusion terminates.

3. Observation with periodic occlusion of all the markers. This
case study intends to show that when the motion capture system pro-
vides no information, only a subset of the joint angles can be correctly
estimated. In fact, Fig. 3.11 shows that during occlusions, the abduc-
tion joint angle (ϑ1) is always kept constant since no angle sensor is
mounted for that joint. Whereas, the other joint angles are accurately
estimated.

Figure 3.12 presents the noisy camera measurements generated in simu-
lation from the true trajectory and evidences the occlusion phenomenon and
the different sampling rates of camera and optical sensors. The measurement
noise power is set one order of magnitude greater than nominal motion cap-
ture system noise, estimated in [64]. Figure 3.13 presents the noisy angular
sensor measurements generated in simulation from the true trajectory of ϑ.
The measurement noise power used in simulation is one order of magnitude
greater than the nominal angular sensors noise, estimated in [64].

3.3 Results and discussion

The switching EKF has been tested experimentally. A preliminary set of
experiments consists of a finger extension and flexion movements on a plane.
During the movements marker occlusion phenomenon occurs.

The joint angle trajectories, obtained by the EKF, are compared with the
trajectories obtained by the RIK algorithm developed to calibrate the angular
sensors and described in Section 3.1.2. The algorithm off-line estimates the
angular position variables from the position of the marker measured by the
motion capture system and it is not robust to occlusion, since it does not
use the angular sensors. A comparison with the main commercial solutions
for joint angle estimation was not possible, since they require three markers
per link and an impractical number of cameras would be needed to perform
such experiments.

Figures 3.14, 3.15, 3.16, 3.17 show the angular position of the joint 1, 2,
3 and 4, respectively, estimated by the EKF sensor fusion algorithm (blue
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Figure 3.13: Angular sensor measurements (equals in each simulation)
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Figure 3.14: Abduction joint angle position (ϑ1)
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Figure 3.15: Flexion joint angle position (ϑ2) estimated through proposed
EKF (blue line) and through analytical inversion kinematic algorithm (red
curve).
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Figure 3.16: Joint 3 angle position (ϑ3) estimated through proposed EKF
(blue line) and through analytical inversion kinematic algorithm (red curve).
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Figure 3.17: Joint 4 angle position (ϑ4) estimated through proposed EKF
(blue line) and through recursive inversion kinematic algorithm (red line).

line) and by the RIK Inversion algorithm (red line).
Fig. 3.14 shows the EKF estimation of the abduction angle ϑ1. The

RIK algorithm does not estimate ϑ1, because it uses a simplified model of
the human hand and it can consider only finger movements without the
abduction DoF.

In presence of occlusions, the EKF allows obtaining a real-time smooth
fill gap.

3.3.1 Repository of captured data

After the encouraging results of the preliminary experiments, a repository of
observed grasp and manipulation tasks has been set up. For each trial, it
contains estimations of the hand pose in the space, joint angles and normal
components of fingertip contact forces.

The grasp and manipulation tasks have been performed on a set of ele-
mentary objects, which includes a cup, a pencil, a soft empty bottle, a soft
half-filled bottle, a small empty rigid bottle and a large empty rigid bottle.
Some objects can be distinguished only through contact force measurements,
e.g. soft empty bottle and soft half-filled bottle. This choice has been made
in order to empathize the importance of contact force knowledge in the ob-
servation of human grasping and manipulation.

The gathered data has been used within Dexmart [2] to tackle several
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Figure 3.18: Index joint angles and estimated tactile forces for the paral-
lelepiped shown in Fig. 3.26 (a)
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Figure 3.19: Index joint angles and estimated tactile forces for the empty plastic
bottle in Fig. 3.26 (b)
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Figure 3.20: Index joint angles and estimated tactile forces for the half-filled
plastic bottle shown in Fig. 3.26 (b)
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Figure 3.21: Index joint angles and estimated tactile forces for the bottle in
Fig. 3.27 (a)

55



0 1 2 3 4 5 6 7
−50

−40

−30

−20

−10

0

10

20

30

40

50

time [s]

 

 

ϑ
1
 [deg]

ϑ
2
 [deg]

ϑ
3
 [deg]

ϑ
4
 [deg]

f × 10 [N]

Figure 3.22: Index joint angles and estimated tactile forces for the bottle in
Fig. 3.27 (b)

0 1 2 3 4 5 6
−50

−40

−30

−20

−10

0

10

20

30

time [s]

 

 

ϑ
1
 [deg]

ϑ
2
 [deg]

ϑ
3
 [deg]

ϑ
4
 [deg]

f × 10 [N]

Figure 3.23: Index joint angles and estimated tactile forces for the bottle
shown in Fig. 3.27 (c)
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Figure 3.24: Example of visualization of the hand during a grasp of the
parallelepiped shown in Fig. 3.26 (a). The hand is in a pre-grasp posture.

Figure 3.25: Example of visualization for a grasp of the empty plastic bottle
in Fig. 3.26 (b)

problems such as Programming by Demonstration, object recognition, seg-
mentation of elementary actions, activity recognition, low-level trajectory
generation and other learning issues, by using not only the kinematic data,
but also contact force information.

The number of the objects has been kept intentionally low, since each
objects is representative of an entire class. For example a can represents
all the cylindric-shaped object involved in typical manipulation tasks. Fig-
ures 3.19, 3.21, 3.22, 3.20, 3.18, 3.23 show examples of the estimated joint
angles and the measured contact force for the index finger. Figures 3.24
and 3.25 are screenshots taken during the visual reproduction of the observed
tasks. Some of the objects involved are shown in Fig. 3.26 and Fig. 3.27
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Figure 3.26: (a) parallelepiped, (b) plastic bottle

Figure 3.27: (a) little cup, (b) small bottle, (c) big bottle

3.3.2 Object Description

Parallelepiped (Fig. 3.26a)

weight: 0.016 kg

height: 70 mm

width: 40 mm

Filled plastic bottle (Fig. 3.26b)

weight: 0.35 kg

base diameter: 60 mm

height: 200 mm

Empty plastic bottle (Fig. 3.26b)

weight: 0.030 kg

base diameter: 60 mm
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height: 200 mm

Little Cup (Fig. 3.27a)

weight: 0.010 kg

base diameter: 45 mm

handle diameter: 25 mm

height: 65 mm

Small bottle (Fig. 3.27b)

weight: 0.20 kg

base diameter: 55 mm

height: 220 mm

Big Bottle (Fig. 3.27c)

weight: 0.40 kg

base diameter: 70 mm

height: 210 mm

3.3.3 Structure of the captured data

A MATLAB nested structure is associated with each trial. The structure
contains information about time, hand pose in space, kinematic model of
the performer’s hand and, for each finger, joint angles and fingertip contact
forces. In detail, the structure is organized as follows:

thumb: it contains information about angles, contact forces and kinematic
parameters of the thumb
(type: structure)

thumb.angles: it contains information about thumb joint angles
(type: structure)
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thumb.angles.values: estimated values of the thumb joint an-
gles. The column i contains the values of the angle ϑi (see
table 3.5).
(type: m× 4 double matrix ) 2

thumb.angles.meas unit: measurement unit of the joint an-
gles.
(type: string)

thumb.tactile: it contains information about the thumb contact force.
(type: structure)

thumb.tactile.values: normal component of the thumb contact
force.
(type: m× 1 double matrix )

thumb.tactile.meas unit: measurement unit of the contact force.
(type: string)

thumb.dh: it contains the Denavit-Hartemberg (D-H) parameters of
the thumb, that is a2, a3, a4 (see table 3.5).
(type: structure)

thumb.dh.values: values of the D-H parameters a2, a3, a4 (see
table 3.5).
(type: 1× 3 double matrix )

thumb.dh.meas unit: measurement unit of the thumb D-H pa-
rameters a2, a3, a4 (see table 3.5).
(type: string )

thumb.base: it contains the transformation matrix T 0
w, whereOw-xwywzw

is a frame fixed on the hand palm and O0-x0y0z0 is defined ac-
cording to D-H convention, see [20] for more detail.
(type: structure)

thumb.base.values: numerical value of T 0
w [20].

(type: 4× 4 double matrix )

thumb.base.tr meas unit measurement unit of the translational
part of the matrix T 0

w.
(type: string)

index: see the description of thumb.

medium: see the description of thumb.

ring: see the description of thumb.

2m is the number of frames
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link a d ϑ α
1 0 0 ϑ1

π
2

2 a2 0 ϑ2 0
3 a3 0 ϑ3 0
4 a4 0 ϑ4 0

Table 3.5: D-H table for all the fingers.

little: see the description of thumb.

hand position: information about the hand position with respect to the
world frame Ob-xbybzb.
(type: structure)

hand position.values: hand position in the base frame.
(type: m× 3 double matrix )

hand position.meas unit: measurement unit of hand position with
respect to the base frame.

hand orientation: information about the hand orientation with respect to
the world frame Ob-xbybzb.
(type: structure)

hand orientation.values: hand orientation with respect to the base
frame expressed in roll-pitch-yaw angles.
(type: m× 3 double matrix )

hand orientation.meas unit: measurement unit of hand orientation
angles with respect to the base frame.

time: information about the acquisition time.
(type: structure)

time.values: numerical values of the acquisition time.
(type: m× 1 double matrix )

time.meas unit: time measurement unit.
(type: string)

61



Chapter 4

High-level sensor fusion

The high-level sensor fusion module was initially developed to improve the
rough hand observation system at the Humanoids and Intelligence Systems
Laboratory of Karlsruhe Institute of Technology (KIT). Afterwards, it has
been integrated without extra effort within the architecture described in
Chapter 1. It has been possible since the high-level module only need a
low-level measurement system that estimates the hand posture and the mea-
surement contact forces and is completely independent from the particular
technology adopted by the lower level.

The sensory environment at KIT, see Fig. 4.1, consists of a dataglove, a
magnetic field tracker, a glove with tactile sensors and a stereo vision system.

The Cyberglove II dataglove measures 22DOF of the human hand, four
joint values of each finger and two joint values of the wrist. The sensor
resolution is < 1◦ and repeatability is 3◦. Each time the datagloves are
put on the position of the sensors is slightly different and they have to be
calibrated. The calibration is done using a gesture based system to measure
the distance between the measured joint angles and the joint angles of a
predefined hand configuration, which the human teacher has to reproduce.

The measured joint angles are mapped to a predefined model of the hu-
man hand. In general, two different kinds of hand models are available:
user-independent, see Fig. 4.2(a), and user-dependent, see Fig. 4.2(b). The
user-independent model was created manually. The user-dependent hand
model, generated using a laser scanner, usually provides a better accuracy.
However, in order to allow different persons to teach the robot system, the
user-independent hand model was used for the experiments, which induces
larger errors.

The glove with tactile sensors is based on the Pressure Profile FingerTPS,
see Fig. 4.3. In each fingertip, a tactile sensor pad is used to measure the
force intensity applied to an object. Due to the size and location of the
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I

II

III

Figure 4.1: Sensor setup: DragonFly II stereo camera system (I), Polhemus
Fastrak magnetic field based tracking device (II), Cyberglove II (III)

(a) User-
independent

(b) User-
dependent

Figure 4.2: Hand models

Figure 4.3: Sen-
sor setup II:
Pressure Profile
FingerTPS tactile
sensors [4]

pads, the human operator has to consider the sensor pads and adapt the
manipulation motion in order to make consistent force measurements. An
additional wrist sensor is available but has not been used in this work. The
system is calibrated using a provided dynamometer. The repeatability is
< 4% of the full scale range, which is 4.55 to 22.73kg [4].

The position and orientation of the human wrist is measured using a Pol-
hemus Fastrak magnetic field based tracking device. The static accuracy of
the tracker is 0.8mm RMSE for the position and 0.15◦ RMSE for the orien-
tation. In our lab environment, a different reference frame is used and the
result may be distorted by metal objects like computers. After calibration,
the position RMSE is 1.17mm and the orientation RMSE is 0.51◦ measured
in a small area above the table using a chessboard.

The stereo vision system with two DragonFly II cameras is used to localize
known objects in the environment. The IVT library [8] is trained with a 3D
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object model to generate different views of the object, which are then used
for the localization algorithm. The 3D models are available in the KIT
ObjectModels Web Database [47].

Multiple noise sources exist: the standardized kinematics and geometric
model of the human hand, the object position and orientation, the tracker
position and orientation and the transformation of the tracker pose to the
pose of the geometric model, i.e. the pose of the tracking device on the
dataglove. As a consequence of this, the fingertip pose estimates relative to
the object are inaccurate and inconsistencies between tactile measurements
and fingertip position occur, e.g. a contact is measured by the tactile sensors
but the 3D model of the human fingertip has no contact with the surface of
the 3D object model.

4.1 Correction method

The observation phase including the proposed correction algorithm is consti-
tuted by three steps:

1. data acquisition and set up of the virtual environment that reproduce
the “real” one

2. use of the geometric information and contact information to define the
correction of the fingertip positions and orientations

3. use of an inverse kinematic algorithm, that finds the pose of the hand
and the joint angles required to implement the correction

The virtual environment is constituted by the 3D models of the hand and
of the objects involved in the observed task. In this work, three different
objects have been considered: a cup, a small plate, a bottle. The hand is
animated with the estimated pose and joint angles during the observation
phase and the position of the object is obtained by the stereo vision sys-
tem. Nevertheless, the proposed algorithm is absolutely general and can be
adopted with every measurement system able to estimate the hand posture
and the position of the object. With no measurement error and no 3D mod-
eling error, the virtual environment reproduces exactly the real one. In this
work, the errors in object 3D models are supposed to be much smaller than
the measurement errors. These often cause inconsistencies between measured
contact forces and hand posture relative to the object. In order to improve
the accuracy of the observed data and specifically to make the motion data
consistent with the contact force data, corrections of the hand pose and fin-
ger configurations have to be computed and implemented. The pseudo-code
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Figure 4.4: Flowchart of the correction algorithm used in the high-level sensor
fusion component

of the correction method is described in Algorithm 1. When a measured
fingertip contact force exceeds the empirical defined threshold, the finger is
considered in contact with the object (line 5). In this work, the threshold has
been fixed at 0.5N. After the contact checking in the “real environment”, in
order to determine if a collision in the virtual environment occurs, the colli-
sion checker described in Section 4.2 is called for each finger (line 10). When
the collision checker is called, for each finger f , it requires as input two 3D
models (see Algorithm 2). The first 3D model, CAf , is the tactile sensor
pad model, which is a thin plate modeling the expected contact area of the
finger f . The second 3D model, O is the model of the grasped object.

If in the real world, according to the force measurement, a finger is con-
sidered in contact with the object and in the virtual environment no collision
is detected or vice-versa (line 11), the finger is considered not-consistent and
the correction is computed on the basis of the information provided by the
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Algorithm 1 Correction algorithm

1: for each frame k do
2: (q0, force) = readSensorData()
3: xgoal = []
4: for each finger f do
5: if forcef > threshold then
6: realContactf = true
7: else
8: realContactf = false
9: end if

10:

(
n̂f , collf , df ,p0f

)
= checkCollision(CAf ,O)

11: if collf 6= realContactf then
12: pf = p0f

+ df · n̂f {correction required}
13: xgoal = append(xgoal, [pf , n̂f(1 : 2)])
14: end if
15: qgoal = CLIK (xgoal, q0,W , α)
16: end for
17: moveHand(qgoal)
18: end for

collision checker, i.e. the versor n̂, the point p0 and the scalar d, defined in
Section 4.2.

As explained in the Algorithm 2, these data allow finding the point pf

on the object O, such that the distance between the pad model of the finger
f and the object is minimum.

The object point p and two of three components of the versor n̂ are
included in the vector xgoal. Its elements specify the desired poses of the
fingertips for the correction step.

In line 15, the vector xgoal is given as input to the CLIK algorithm (see
Algorithm 3 in Section 4.3), which is in charge of finding the hand configu-
ration qgoal such that, for each non-consistent finger, the fingertip position
is pf and the versor normal to the pad CAf is aligned with the versor n̂f .
The starting configuration q0 of the CLIK algorithm is taken as the hand
configuration measured by the sensor setup.

4.2 Geometric information from the scene

To obtain the geometric information necessary to define the correction of the
fingertip poses, the collision checker Proximity Query Package (PQP) [50]
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has been used in combination with Openrave [31]. Algorithm 2 describes the
high level behavior of the collision checker, based on PQP. The input data
of the collision checker module are two 3D models: model1 and model2.

Algorithm 2 Collision checker behaviour

1: (n̂, coll, d,p0)=checkCollision(model1,model2) :
2: collision = isColliding(model1, model2)
3: if collision == false then
4: p0 = computePoint(model1, model2)
5: d = computeDistance(model1, model2)
6: n̂ = computeNormal(model1, model2)
7: return (n̂, collision, d,p0)
8: else
9: p0 = computePenetrationPoint(model1, model2)

10: d = computePenetrationDepth(model1, model2)
11: n̂ = computeNormal (model1, model2)
12: return (n̂, collision, d,p0)
13: end if

The output variables p0, n̂, d are such that:

• When model1 and model2 are not in collision, the point p = p0 + d · n̂
is the point on model2 closest to model1, d is the minimum distance
betweenmodel1 andmodel2, p0 is the point onmodel1 closest tomodel2,
n̂ is the versor of the line connecting p and p0.

• When model1 and model2 are in collision, the point p = p0 + d · n̂ is
the point on the border of model2 farthest from the part of model1 in
collision with model2. In this case it is d < 0. Briefly, if the translation
p− p0 is applied, model1 is brought outside model2 and it is d = 0.

Since, for each non-consistent finger f , the point pf and the versor n̂f will
be set as corrected positions and orientations in the task space, the correction
is computed according to a minimum distance criterion.

4.3 Inverse kinematics method

Algorithm 3 explains the pseudo-code for the inverse kinematics. Line 1 is
the definition of the function, which specifies the input and output variables.

The task space goal xgoal contains, for each not-consistent finger, the
desired position and orientation, computed by calling the collision checker.
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For a finger, the position is the point p and the orientation is represented by
the first two components of the vector n̂, defined in Section 4.2.

The authors have empirically observed that the performance in terms of
velocity and stability is often better, if the orientation is specified only for
one or two fingers. In fact, when the size of Jacobian matrix increases too
much, a significant decreasing in the performance may occur. Hence, in all
the experiments presented in Section 4.5, the orientation has been fixed only
for the first two not-consistent fingers.

The vector q0 contains the measured hand posture, i.e. position, orienta-
tion and joint angles. It is the starting point of the IK algorithm. The more
accurate the measurement system is, the closer q0 is to the correct minimum
and then the faster and more effective the search is.

To take into account the differences in variances of the sensors and in
magnitude order, the weighted pseudo-inverse can be computed instead of
the simple right pseudo-inverse.

J † = W−1JT(JW−1JT)−1 (4.1)

where the weight matrix W can be chosen in this form:

W = f(Σ) (4.2)

with f monotonically increasing function of the sensor standard deviations
σ1, σ2, ..., σn and

Σ = diag (σ1, σ2, ..., σn) . (4.3)

The simplest choice for W is the following:

W = wΣ (4.4)

where w is a positive scalar.

Algorithm 3 Inverse Kinematic Algorithm

1: qgoal = CLIK (xgoal, q0,W , α,k(.)) :
2: e = xgoal − k(q0)
3: while ‖e‖ > ε do
4: J(q) = computeJacobian (k(.), q)
5: q = q + αJ†(q)(xgoal − k(q))
6: e = xgoal − k(q)
7: end while
8: return qh
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With this choice, the algorithm will tend to modify more the variables
whose measurement are less reliable and less the variable whose measure-
ments are more reliable. On the other hand, when the magnitude order of
the sensor variance is too different, a possible choice is

W = KΣ (4.5)

K = diag (k1, k2, ..., kn) . (4.6)

With this choice, the parameters k1, k2, ..., kn have usually to be fixed empir-
ically.

The scalar α is the so-called CLIK gain. The gain strongly influences the
speed of convergence and the stability of the algorithm. In [36], a theoretical
study on the stability of closed loop inverse kinematics algorithms is proposed
and it can be an useful tool to correctly tune the parameters of the IK
algorithm and, in particular, the gain α.

The last input parameter is k(.), the direct kinematics function. In this
application, k is a function of the position of the hand phand, the orientation
of the handΦhand and the finger joint angles qjoint. It is defined as: x = k(q),

q =
[
phand Φhand qjoint

]T
and x =

[
xpos xorientation

]T
. The main advan-

tage to have as input the direct kinematics function is that the algorithm
does not require any changes if a different hand kinematic model is adopted.
For this reason, the Jacobian is also numerically evaluated (line 4). Since
the Jacobian computation is much faster than the pseudo-inverse computa-
tion, the Jacobian numerical evaluation does not cause a significant delay in
finding the IK solution.

4.4 Collision-free correction

The basic version of the algorithm looks for a posture of the hand that guar-
antees the consistency between posture and fingertip contact forces. Nev-
ertheless, for some tasks, collisions might occur between parts of hand (e.g.
palm) and the grasped object. An example of collision is shown in Fig. 4.6,
in which the hand palm is in collision with the cup. To handle this problem,
a modified version of the CLIK algorithm has been developed that, in case of
collisions, computes the corrected hand posture considering two tasks. The
first task consists of finding a hand posture such that the fingertips are in the
desired poses, while the second task consist of finding a collision-free hand
posture. A priority level is associated with each task. In this work, the accu-
rate placement of the fingertips in the desired poses has the high-level priority
since it guarantees the kinetostatic consistency, very important in PbD ap-
plications. Classical techniques to provide a system with the possibility of
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Figure 4.5: Flowchart of the extended CLIK algorithm for a collision-free
posture correction

executing multiple tasks are the so called behavior-based approaches. The
key idea is that the intelligence of the system is provided by a set of behav-
iors (tasks in this case), designed to achieve specific goals, that are activated
on the basis of external information. One of the most adopted approach
in robotics is the subsumption architecture, where each task is related to a
layer that is an asynchronous module communicating with the others. Lay-
ers have different priority levels, and the possible conflict among the tasks
is solved by assigning a hierarchy so that the higher-level task can subsume
the lower-levels.

Another behavior-based approach, called Null Space Based (NSB), is de-
scribed in [7] for mobile robotics applications. In the NSB approach, behav-
iors are merged to define the final motion directives to the robots. In partic-
ular, the behaviors are arranged in priorities, and they are composed using
null-space projection matrices so that multiple behaviors are simultaneously
activated but the lower-priority behaviors do not affect the higher-priority
ones. In fact, the NSB always fulfils the highest-priority task; the lower-
priority tasks, on the other hand, are fulfilled only in a subspace where they
do not conflict with the ones having higher priority. The NSB approach is
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Algorithm 4 NSB Inverse Kinematic Algorithm

1: qgoal = NSBCLIK(xgoal, q0,W , α,k(.), dgoal) :
2: e = xgoal − k(q0)
3: while ‖e‖ > ε do
4: J(q) = computeJacobian (k(.), q)
5: (n̂, d) = checkCollision(O,palm)
6: q = q + αJ†(xgoal − k(q)) + (I − J†J)(n̂ (dgoal − d))
7: e = xgoal − k(q)
8: end while
9: return qh

particularly suitable for the application described in this work, since it can
be derived by simply extending the CLIK algorithm described in Section 4.3.

Eq. 4.7 represents the core of the NSB CLIK algorithm, that is executed
when a collision occurs before the correction or after the correction with the
basic CLIK; it is constituted by two terms. The first term represents the
high-priority task, in this case it consists of finding a posture that brings
the fingertips to the desired poses and the second term is the low-priority
task that brings the hand in a collision-free posture. The low-level priority
task is projected into the null-space of the the high-priority task through the
projector (I−J

†
kJk). As a consequence, the algorithm will converge, among

the infinite solutions satisfying the high-priority task, to a solution such that
also the low-level priority task is fullfilled, if such a solution exists.

qk+1 = qk + αJ †k(xgoal − k(qk)) + (I − J
†
kJk)(J

†
ck
(dgoal − dk)) (4.7)

The matrix J c is defined as

J c =
∂d

∂p
=
∂ ‖p− p0‖

∂p
=

pT − pT
0

‖p− p0‖
= n̂T

and, according to the definition of pseudo-inverse, it is:

J †c = n̂.

The unit vector n̂, the scalar d and the points p0 are outputs of the col-
lision checker and have been defined in Section 4.2. Algorithm 4.4 describes
in more details the NSB extension of CLIK method and the flow-chart in Fig
4.5 shows the strategy for the collision-free correction. Algorithm 4.4 con-
siders as an example only palm-object collisions, but it is worth to note that
the same method can be adopted to find collision-free posture with each part
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Figure 4.6: Example of palm-object collision

Figure 4.7: Initial posture (left), corrected posture (right)

of the hand or also selfcollision-free hand postures. The obvious drawback is
that the more collision avoidance features are included in the NSB-CLIK the
slower is the execution time of the algorithm itself. In fact the main draw-
back of Algorithm is that the collision checker is called in each iteration. As a
consequence, with relatively slow computer systems it may not work on-line
effectively.

4.5 Results and discussion

To test the performance of the developed algorithm, a set of experiments
have been performed, consisting of three different tasks: unscrewing a bot-
tle, grasping a cup and grasping a plate. For each “observed” task, the frame
by frame consistency analysis and correction have been carried out. In all the
frames of each experiment, the consistency condition has been successfully
attained. In this section, the results concerning the two or three frames per
experiment, which require the highest correction effort, are discussed. The
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Figure 4.8: Initial posture (left), corrected posture (right)

Figure 4.9: Initial posture (left), corrected posture (right)

results are summarized in the Figures 4.7-4.11 and in the Tables 4.1, 4.3, 4.4.
In Figures 4.7, 4.8, 4.9 some frames of the “Unscrewing a bottle” task are
shown. In the left part of the three figures, according to the tactile measure-
ments (see Algorithm 1), the index and thumb fingers should be in contact
with the bottle. Nevertheless, the collision checker of the virtual environment
computes no contact. Hence, a correction (shown on the right part) has been
applied to the pose of the hand and to the thumb and index joint angles.

Figures 4.10 and 4.11 show the task “grasping a plate”. In both frames,
the thumb and ring fingers have no contacts with the object, but the mea-
sured fingertip forces exceed the threshold. As a consequence, the consistency
condition is not satisfied and a correction is applied. In Fig. 4.13 and 4.12
the task “grasping a cup” is represented. It is interesting to note that in
Fig. 4.13 a collision occurs between the cup and the proximal phalange of
the middle finger. It may happen, when the initial error norm is too large.
At the moment, to allow the on-line execution, the collision avoidance is
not included in the algorithm functionalities. If for the specific application
it is important to avoid collisions, Algorithm 4.4 has to be adopted in the
computing of the hand posture. Yet, with a good sensor setup, the collision
phenomena are quite rare. Table 4.1 shows the initial and corrected hand
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Fig. Initial Position [m] Corrected Position [m]
4.7 (0.955,−0.07, 1.06) (0.907, 0.030, 1.15)
4.8 (0.952,−0.07, 1.03) (0.902, 0.028, 1.14)
4.9 (0.958,−0.07, 1.05) (0.879, 0.022, 1.15)
4.12 (0.884,−0.074, 0.905) (0.802,−0.046, 0.934)
4.13 (0.778,−0.008, 0.950) (0.818,−0.021, 0.929)
4.10 (0.895,−0.0008, 0.905) (0.817, 0.0068, 0.987)
4.11 (0.894,−0.0007, 0.905) (0.820, 0.0010, 0.990)

Table 4.1: Initial and corrected position of the hand

position and Table 4.3 shows the initial and corrected finger joint angles. The
qualitative improvement of the hand configuration estimation can be appre-
ciated from the presented screenshots, moreover the obtained coherence of
the sensor data will allow to improve the following learning phase within the
PbD framework.

In Table 4.4, some parameters are listed to evaluate the performance of
the IK algorithm. With a careful choice of the tolerance ǫ and the gain α,
only few iterations are required for the algorithm to converge. To have a
rough idea of the execution time, a single pseudo-inverse computation of the
CLIK algorithm has required, for two not-consistent fingers, an average com-
putation time of 1.5µs, evaluated on 1000 trials in a C++ implementation,
running on a Intel Core2Duo with 4GB RAM. The execution of the collision
checking algorithm for a single fingertip takes on average 0.5ms.

Figure 4.10: Initial posture (left) and corrected posture (right)
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Figure 4.11: Initial posture (left), corrected posture (right)

Figure 4.12: Initial posture (left), corrected posture (right)

Figure 4.13: Initial posture (left), corrected posture (right)
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Fig Init Orientation [rad] Corr. Orientation [rad]
4.7 (2.86,−0.987, 1.56) (2.84,−0.987, 1.56)
4.8 (2.93,−0.966, 1.58) (2.94,−0.966, 1.57)
4.9 (3.08,−1.05, 1.45) (3.09,−1.05, 1.45)
4.12 (−2.18,−1.21, 0.195) (−1.52,−1.69,−0.017)
4.13 (−1.49,−1.04,−0.292) (−1.52,−1.20,−0.400)
4.10 (−1.54,−0.0454, 0.244) (−1.45, 0.0553,−0.171)
4.11 (−1.56,−0.043, 0.295) (−1.49, 0.045,−0.133)

Table 4.2: Initial and corrected orientation expressed in ZYZ Euler angles

F Fig. Initial Angles [rad] Corrected Angles [rad]
T 4.7 (.93,−.96,−.37,−.48) (1.54,−.93,−.052, .06)
I (−.74,−.065,−.60,−.26) (−1.01, .1,−1.08, .22)
T 4.8 (.91,−1.1,−.19,−.53) (1.42− .99, .011, .006)
I (−.85,−.057,−.48,−.26) (−1.07, 0.005,−.88, .20)
T 4.9 (.96,−1.04,−0.18,−.53) (1.46,−.86,−.12,−.13)
I (−.61,−.062,−.84, .03) (−.71, .16,−1.38, .41)
T 4.12 (.9,−1.1,−.49,−.45) (.9,−1.07,−.5,−.45)
I (−.19,−.02,−.76,−.42) (−.42, .01,−.82,−.56)
M (−.29, 0,−.7,−.11, ) (−.35,−.07,−.92,−.24)
R (−.36, .19,−.49,−.07) (−.37, .19,−.48,−.067)
I 4.13 (−.33, .25,−.9,−.79) (−.32, .31,−.87,−.8)
M (−.51, .13,−.84,−.15) (−.51, .16,−.88,−.17)
T 4.10 (.9,−.86,−.41,−.70) (.73,−.79,−.39,−.72)
R (−.78, .21,−.98,−.69) (−.76, .21,−.90,−.66)
M 4.10 (−.78, 0,−1.1,−.15) (−.59,−.13− 1.17,−.23)
R (−.92, .24,−.9,−.7) (−.93, .24,−.81,−.65)
L (−.76, .49,−.86,−.15) (−.77, .48,−.87,−.15)

Table 4.3: Initial and corrected finger joint angles. T=Thumb, I=Index,
M=Middle, R=Ring, L=Little
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Fig. ‖e0‖ α N.o.I. ǫ
4.7 0.311 0.8 8 10−6

4.8 0.243 0.8 9 10−6

4.9 0.318 0.8 9 10−6

4.12 0.2691 1.1 6 10−6

4.13 0.281 1.1 6 10−6

4.10 0.19 1.1 6 10−6

4.11 0.20 1.1 6 10−6

Table 4.4: Initial error norm, gain, number of iterations and tolerance of the
IK algorithm
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4.6 A stability theorem to tune the CLIK

gain

This Section presents novel proofs of convergence of two kinds of CLIK algo-
rithms directly in the discrete-time domain, thus leading to useful guidelines
for gain selection in relation to the sampling time. The adopted methodology
is not based on Lyapunov arguments, which are not straightforward to apply
in the case of redundant robots and sometimes easily lead to technical errors.
In fact, in such a case proving that the origin of the task space error space
is asymptotically stable is not so trivial, since the Lyapunov function candi-
date depend not only on the task space but on the configuration variables
too. Therefore, it cannot be shown to be positive definite without including
terms depending on the configuration variables. The alternative approach
followed here completely avoids the use of Lyapunov functions, nevertheless
it rigorously proofs the stability of the algorithm according to the compari-
son principle for discrete-time systems. The presented simulation shows how
the sufficient conditions for the jacobian pseudo-inverse algorithm are not
conservative at all.

4.6.1 The inverse kinematics problem

Let x ∈ X be the vector of task variables of a robotic system withX a domain
of Rm and let q ∈ Q be the vector of the robotic system configuration with
Q a domain of Rn, with m ≤ n. For example, in a robotic manipulator x

is the pose of the end effector and q is the vector of joint positions, whereas
in a platoon of mobile robots, q is the vector of coordinates representing the
location of each robot and x is the vector of suitable task variables depending
on the mission.

The direct kinematics equation can be always written in the form

k : Q ⊆ R
n → X ⊆ R

m, x = k(q). (4.8)

This function will be hereafter called “direct kinematics function” or “task
function” without distinction.

Under the assumption of absence of kinematic singularities within the
configuration space Q, the jacobian

J(q) =
∂k(q)

∂q
∈ R

m×n (4.9)

is full-rank ∀ q ∈ Q. This matrix will be hereafter called “robot jacobian”
or “task jacobian” without distinction. Both the direct kinematics function
and the robot jacobian are assumed to fulfill the following assumptions:
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i) ∃ δ > 0 : ‖J(q)‖ ≤ δ, ∀ q ∈ Q

ii) ∃ β > 0 : σ(J(q)JT(q)) ≥ β, ∀ q ∈ Q

iii) the function k(q) is smooth enough such that

k(q + q̃) = k(q) + J(q)q̃ + rk(q),

where the reminder rk(q) is such that

∃ νk > 0 : ‖rk(q)‖ ≤ νk‖q̃‖2, ∀ q̃ : q + q̃ ∈ Q,

where, as matrix norm, the spectral norm, i.e. the largest singular value, has
been assumed and the symbol σ(X) denotes the smallest singular value of
the matrix X. Assumptions i) and ii) are aimed at quantifying the distance
from singularities, while assumption iii) is aimed at taking into account the
degree of smoothness of k(q). Basically, the nonlinear functions have to pos-
sess second-order derivatives bounded, and fortunately in many applications
such a requirement is verified. For example, every robot with revolute joints
has a direct kinematics function constituted by polynomial combinations of
trigonometric functions of the joint variables, therefore their second-order
derivatives are certainly bounded. Such a degree of smoothness can be easily
quantified by applying the following lemma.

Lemma 1. Given a vector function defined in a domain D ⊆ R
n, f : x ∈

D → f (x) ∈ R
m with the Hessian matrices H(fi) of all its components

fi(x), i = 1, . . . , m norm-bounded uniformly in D, i.e.

∃ νi > 0 : ‖H(fi(x))‖ ≤ νi, ∀x ∈ D, i = 1, . . . , m (4.10)

then, ∀ x̃ ∈ D : x+ x̃ ∈ D and the whole line from x to x̃ belongs to D, it
is

f (x+ x̃) = f (x) +
∂f (x)

∂x
x̃+ rf (x) (4.11)

and the reminder rf (x) is such that

∃ νf > 0 : ‖rf (x)‖ ≤ νf‖x̃‖2 (4.12)

Proof. The proof is a direct consequence of Taylor’s theorem for functions
of several variables [49] written with a second order reminder. This theorem
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ensures that it always exists a point ξ on the line connecting x and x̃, if this
entirely belongs to the domain D, such that

f (x+ x̃) = f (x) +
∂f (x)

∂x
x̃+

1

2




x̃TH(f1(ξ))x̃
x̃TH(f2(ξ))x̃

...
x̃TH(fm(ξ))x̃


 .

Denoting the last term of the right-hand side with the symbol rf , this can
be easily upper bounded as

‖rf(x)‖≤
√
m‖rf(x)‖∞ =

√
m/2max

i
|x̃TH(fi(ξ))x̃| ≤

≤
√
m/2max

i
‖H(fi(ξ))‖‖x̃‖2 ≤

≤
√
m/2max

i
νi‖x̃‖2 , νf‖x̃‖2

Let xdh ∈ X , being h ∈ Z the discrete-time variable, be a desired task
space position, the objective of any IK algorithm is to find one of the, in
general many, configurations qdh

such that

xdh = k(qdh
), (4.13)

which is a system of m nonlinear equations, therefore the first ideas to tackle
the problem resorted to iterative algorithms devoted to find zeros of nonlinear
functions, e.g. the Newton-Raphson method in [10], [39]. In the following,
two versions of the so-called CLIK algorithm are recalled [65], whose stability
will be later proved in the discrete-time domain together with an estimation
of the region of attraction.

Differently from analytic solutions (available only in special cases) and
the iterative algorithms mentioned above, the CLIK algorithms rely on the
inversion of the differential kinematics in the continuous-time domain, i.e.

ẋ(t) = J(q(t))q̇(t), (4.14)

done in a closed-loop fashion as originally proposed in [65]

q̇(t) = J †(q(t))
(
ẋd(t) + γ(xd(t)− k(q(t))

)
(4.15)

so as to avoid drift of the tracking error when implemented in discrete-time,
e.g. by resorting to the Euler integration method with sampling time T ,
namely

qh+1 = qh + TJ †(qh)(ẋdh + γ(xdh − k(qh)) (4.16)
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and to improve convergence rate acting on the positive gain γ. In the two
equations above the symbol X† denotes the Moore-Penrose pseudo-inverse
of the lower-rectangular matrix X. Therefore, in view of assumptions i),ii)
and of standard properties of matrix norm, it is

‖J †(q)‖ ≤ δ/β , δ′, ∀ q ∈ Q. (4.17)

Alternatively to the jacobian pseudo-inverse algorithm, the jacobian trans-
pose method can be applied when a constant task space desired position is
considered, i.e.

qh+1 = qh + γTJT(qh)(xd − k(qh)). (4.18)

The stability analysis of discrete-time systems similar to those in (4.16)
and (4.18) has been tackled in a very few papers (e.g. [27],[28]) based on Lya-
punov methods. In Section 4.6.2 an alternative convergence analysis of these
algorithms will be given, providing criteria to select the gain γ in relation to
the sampling time, as well as an estimation of the region of attraction will
be given.

4.6.2 Stability analysis

In the discrete-time version of the CLIK algorithm using the pseudo-inverse
of the jacobian (4.16), with a constant xd, the dynamics of the task space
error eh = xd − k(qh) is governed by the equation

eh+1 = xd − k(qh + γTJ †heh)

= xd − k(qh)− γTJhJ
†
heh − rk(qh)

= (1− γT )eh − rk(qh), (4.19)

where the notation Jh = J(qh) has been introduced for brevity, and the
expression of k(q) in iii) has been exploited. The proof of the algorithm
convergence and the estimation of the region of attraction depending on γ
are addressed by the following theorem. The proof will not make use of
any Lyapunov argument as most of the papers dealing with IK of redundant
robots (the most recent one is [6]) do. However, when redundant robots are
considered, proving that the origin of the task space error space is asymp-
totically stable requires a Lyapunov function candidate which includes terms
depending not only on the task space variables, but also on the configura-
tion variables. The alternative approach followed here completely avoids the
use of Lyapunov functions, nevertheless it rigorously proofs the stability of
the algorithm. It is based on the following Lemma that is a consequence of
the comparison principle for discrete-time systems and is a special case of
classical results on recurrence inequalities that can be found in [48].
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Lemma 2. Let bh be a non-negative sequence satisfying

bh+1 ≤ αbh + c, (4.20)

where α and c are non-negative real numbers. If b0 ≤ a0, being a0 the initial
condition of the dynamic system

ah+1 = αah + c, (4.21)

then
bh ≤ ah, ∀h ≥ 0. (4.22)

Proof. The proof is by induction. The claim is true for h = 0. Suppose it is
true for h, then for h + 1 it is

bh+1 ≤ αbh + c ≤ αah + c = ah+1. (4.23)

Theorem 1. Under the assumptions i)–iii), if the initial task space error e0

and the gain γ are such that

0 < γ ≤ 1/T and ‖e0‖ <
1

γTνkδ′2
(4.24)

or

1/T < γ < 2/T and ‖e0‖ <
2− γT

γ2T 2νkδ′2
, (4.25)

then the CLIK algorithm in (4.16) ensures exponential convergence of the
task space error dynamics and the configuration variables qh are bounded
and converge to a constant value, i.e.

∃α ∈ (0, 1), φ > 0 : ‖eh‖ ≤ φαh, ∀h ≥ 0 (4.26)

∃ ρ > 0 : ‖qh‖ ≤ ρ, ∀h ≥ 0 (4.27)

lim
h→∞

‖qh+1 − qh‖ = 0. (4.28)

Proof. From (4.19) the following inequalities are obtained

‖eh+1‖ ≤ |1− γT |‖eh‖+ ‖rk(qh)‖
≤ |1− γT |‖eh‖+ νk‖γTJ†heh‖2

≤ (|1− γT |+ γ2T 2νkδ
′2‖eh‖)‖eh‖, (4.29)

where the bounds in assumption iii) and in Eq. (4.17) have been exploited
together with standard norm properties. Now, assume that the task error
norm is bounded, i.e.

‖eh‖ ≤ φ, ∀h ≥ 0. (4.30)
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In a moment it will be shown that such a condition is guaranteed by the sole
hypothesis that the initial condition satisfies one of the two conditions (4.24)
or (4.25). Equation (4.29) becomes

‖eh+1‖ ≤ (|1− γT |+ γ2T 2νkδ
′2φ)‖eh‖ , α‖eh‖, ∀h ≥ 0. (4.31)

Firstly, assume that the gain and the initial task space error satisfy (4.24),
by choosing φ = ‖e0‖ it is

φ <
1

γTνkδ′2
⇒ α < 1, (4.32)

hence the following scalar linear system

ẽh+1 = αẽh (4.33)

is asymptotically stable and its response with initial condition ẽ0 = φ is

ẽh = φαh, h ≥ 0. (4.34)

Therefore, in view of (4.31) and recalling that ‖e0‖ = ẽ0 = φ, from Lemma 2
it results

‖eh‖ ≤ φαh, ∀h ≥ 0, (4.35)

which proves (4.26) and ensures also that (4.30) is verified. To conclude the
proof, the boundedness of qh can be easily shown by considering Eq. (4.16)
and the following chain of inequalities

‖qh+1‖ ≤ ‖qh‖+ ‖γTJ†heh‖ ≤ ‖qh‖+ γTδ′φαh, (4.36)

where Eqs. (4.17) and (4.35) have been exploited. Now, consider the scalar
linear system

q̃h+1 = q̃h + γTδ′φαh, (4.37)

whose response with initial condition q̃0 = ‖qi‖ is

q̃h = q̃0 +
γTδ′φ

1− α
(1− αh). (4.38)

Again, in view of (4.36),(4.38) and by applying Lemma 2, it results

‖qh‖ ≤ q̃h ≤ q̃0 +
γTδ′φ

1− α
= ρ, ∀h ≥ 0, (4.39)

which proves the claim (4.27). To conclude the proof, observe that from (4.16)
it follows that

‖qh+1 − qh‖ ≤ γT‖J−1h ‖‖eh‖ ≤ γTδ′‖eh‖, (4.40)

and thus, in view of (4.35), the last claim (4.28) immediately follows. If the
gain γ and the initial task error e0 satisfy assumption (4.25), the proof is
perfectly analogous.
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The Theorem above clearly shows that the gain of the CLIK algorithm has
to be chosen in relation to the sampling time and, as expected, the lower is
the sampling time, the larger can be selected the gain. Moreover, the bound
on the initial task space error allows to estimate the region of attraction
of the origin of the task space error space, which can be enlarged only by
reducing such gain or by staying far from singularities. Finally, the upper
limit to the gain 2/T is certainly given by a sufficient condition, although it
does not appear too restrictive as confirmed by the simulations presented in
Section 4.6.3. Furthermore, the theorem ensures that no inner motion can
occur even if no redundancy resolution scheme is adopted (see claim (4.28)
of Theorem 1). Finally, the exponential convergence condition (4.26) implies
the local exponential asymptotical stability of the origin of the task space
error space.

Now, the convergence of the discrete-time IK algorithm, which makes use
of the jacobian transpose, i.e. Eq. (4.18), will be proved. The analysis will
be carried out by resorting to the same methodology used in the previous
theorem and to the following Lemma.

Lemma 3. Let H be a full rank m× n matrix, with m ≤ n, then

‖I − ηHHT‖ = 1− ησ(HHT), ∀η ∈ [0, 1/‖HHT‖). (4.41)

Proof. Consider the singular value decomposition H = UΣV T, the assump-
tion that H is full rank implies that Σ = diag{σ1, . . . , σm} is such that
σ1 ≥ σ2 ≥ . . . ≥ σm > 0 and of course it is Σ2 = diag{σ2

1, . . . , σ
2
m}, where

σ2
1 ≥ σ2

2 ≥ . . . σ2
m > 0 are the singular values of HHT, whose norm is

therefore σ2
1. Furthermore, it is

I − ηHHT = I − ηUΣV TV ΣUT = I − ηUΣ2UT

= UUT − ηUΣ2UT = U(I − ηΣ2)UT, (4.42)

where the matrix I−ηΣ2 = diag{1−ησ2
1, . . . , 1−ησ2

m} is such that 1−ησ2
m ≥

1−ησ2
m−1 ≥ . . . ≥ 1−ησ2

1 > 0 ∀η ∈ [0, 1/σ2
1), thus the decomposition (4.42),

except for a simple reordering, is the singular value decomposition of I −
ηHHT whose norm is therefore 1− ησ2

m = 1− ησ(HHT).

The task space error dynamics of the algorithm (4.18) is governed by the
equation

eh+1 = xd − k(qh + γTJT
heh)

= xd − k(qh)− γTJhJ
T
heh − rk(qh)

= (I − γTJhJ
T
h )eh − rk(qh), (4.43)
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where the expression of k(q) in iii) has been exploited again. The following
theorem carries out the convergence analysis of this algorithm and provides
a bound to the gain γ.

Theorem 2. Under the assumptions i),ii),iii), if the initial task space error
e0 and the gain γ are such that

0 < γ <
1

Tδ2
and ‖e0‖ <

β

γTνkδ2
, (4.44)

then the CLIK algorithm in (4.18) ensures exponential convergence of the
task space error dynamics and the configuration variables qh are bounded
and converge to a constant value, i.e.

∃α ∈ (0, 1), φ > 0 : ‖eh‖ ≤ φαh, ∀h ≥ 0 (4.45)

∃ ρ > 0 : ‖qh‖ ≤ ρ, ∀h ≥ 0 (4.46)

lim
h→∞

‖qh+1 − qh‖ = 0. (4.47)

Proof. From (4.43) and, owing to assumption (4.44), by applying Lemma 3
to compute the norm of the matrix I − γTJhJ

T
h , the following inequalities

are obtained

‖eh+1‖ ≤ ‖I − γTJhJ
T
h‖‖eh‖+ ‖rk(qh)‖

≤ (‖I − γTJhJ
T
h‖+ γ2T 2νkδ

2‖eh‖)‖eh‖ =

= (1− γTσ(JhJ
T
h ) + γ2T 2νkδ

2‖eh‖)‖eh‖ ≤
≤ (1− γTβ + γ2T 2νkδ

2‖eh‖)‖eh‖, (4.48)

where the bounds in assumptions i),ii),iii) have been exploited together with
standard norm properties. Now assume that the task error norm is bounded,
i.e.

‖eh‖ ≤ φ, ∀h ≥ 0. (4.49)

In a moment it will be shown that such a condition is guaranteed by the
sole hypothesis that the initial condition satisfies condition (4.44). Equa-
tion (4.48) becomes

‖eh+1‖ ≤ (1− γTβ + γ2T 2νkδ
′2φ)‖eh‖ , α‖eh‖, ∀h ≥ 0. (4.50)

Since, by assumption, the gain and the initial task space error satisfy (4.44),
by choosing φ = ‖e0‖ it is

φ <
β

γTνkδ2
⇒ α < 1. (4.51)

The rest of the proof is perfectly analogous to the one of Theorem 1 and thus
it is omitted for brevity.
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Note that, differently from the stability analysis performed in [27], there
is no necessity to include any additional matrix to avoid inner motions. In
fact, no inner motion can occur since the configuration variables are shown
to reach a steady-state (see claim (4.47) in Theorem 2). Moreover, also in
this case the limit on the gain γ is related to the sampling time and to the
robot kinematics. In particular, the closer is any kinematic singularity to
the configuration space Q, the lower is the bound β and thus the lower can
be selected the gain γ if the same amplitude of the region of attraction is
desired. On the other hand, the gain can be increased if a smaller region of
attraction can be tolerated.

4.6.3 Simulations

Two simulation cases have been presented to show the practical utility of the
results obtained.

The first case study is the classical inverse kinematics problem for a three-
link planar manipulator, and the simulations are intended to show how the
sufficient conditions of Theorem 1 are not conservative at all. The simula-
tions were carried out in MATLAB/Simulink using the Embedded MATLAB
toolbox. solutions [67], thus the

Assuming 1m long links, the direct kinematics function x = k(q) is

x1 = cos(q1) + cos(q1 + q2) + cos(q1 + q2 + q3) (4.52)

x2 = sin(q1) + sin(q1 + q2) + sin(q1 + q2 + q3) (4.53)

where q =
(
q1 q2 q3

)T
is the vector of joint variables and x =

(
x1 x2

)T
is the vector of task space variables, i.e. the Cartesian position of the robot
end effector (x1, x2). The robot jacobian, not reported for brevity, is always
full rank if, e.g. the joint variables q2 and q3 are constrained to assume
values in the interval [−3/4π,−π/4]. Within this joint space, it is easy to
numerically evaluate the constants δ = 3.09 and β = 9.58 in assumptions i),
ii), respectively. It is also evident that both the direct kinematics function
and all the columns of the jacobian have norm-bounded Hessian matrices.
Therefore, assumption iii) is verified and the constant νk = 3.09 is easily
estimated recalling its definition in Lemma 1, i.e. νk =

√
2/2max{ν1, ν2},

being ν1 and ν2 the upperbounds of the Hessian matrices norm of the function
k(q). These constants are useful to estimate the regions of attraction of the
two algorithms, i.e. the maximum allowed initial task space error norm,
according to Eqs. (4.24),(4.25) and (4.44), respectively.

The desired constant position in the task space is xd =
(
−0.3 0.4

)T
. The

considered sampling time is T = 1ms, while the initial robot configuration is
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Figure 4.14: CLIK algorithm based on the jacobian pseudo-inverse: norm
of the task space error with γ = 0.5/T (circles), γ = 1.9/T (dots) and
γ = 2.01/T (crosses).

qi = (−π −π/2 −2π/3)T. The robot is used in the following simulations
to show that the sufficient condition on the algorithm gain γ of Theorems 1
is not too conservative. The algorithm based on the jacobian pseudo-inverse
(Eq. (4.16)) has been tested with three values of the gain, i.e. γ = 0.5/T ,
γ = 1.9/T and γ = 2.01/T , the last one just a little bit over the limit in (4.25).
The resulting task space error norm is reported in Fig. 4.16 for all gain values.
It is evident how the algorithm converges only with the gain values less that
2/T . The results obtained by using the inverse kinematics algorithm with
the jacobian transpose are reported in Fig. 4.18, which evidently shows that
the sufficient condition found in Theorem 2 are more conservative than those
found in Theorem 1, since with a gain γ equal to 1/(βT ) the algorithm still
converges, whereas the minimum value of the gain γ leading to an unstable
behaviour of the algorithm is 20/(βT ).

The second case study is the IK problem for the eleven-link humanoid
manipulator described in Section 2.9.9 of [67]. It is constituted by a four-link
torso and a seven-link arm. The simulations are intended to show how the
sufficient conditions of Theorem 1 are not restrictive at all. The simulations
were carried out in MATLAB/Simulink using the Robotics Toolbox [22]. The
forward kinematics of the robot has been obtained by solving the exercise 2.14
of [67]. In order to perform the simulation, a subset Q of the joint space has
been considered, in which the jacobian matrix of the manipulator is full-
rank. Within this joint space, it is easy to evaluate, through a standard
nonlinear optimization algorithm, the constants δ = 4.19 and β = 0.076, in
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Figure 4.15: CLIK algorithm based on the jacobian transpose: norm of the
task space error with γ = 0.5/(βT ) (circles), γ = 1/(βT ) (dots) and γ =
20/(βT ) (crosses).

assumptions i),ii), respectively. To verify that the direct kinematics function
have norm-bounded Hessian matrices, namely that assumption iii) holds, the
constant νk = 9.17 is easily estimated recalling its definition in Lemma 1,
i.e. νk =

√
2/2max{νi}, being νi the upper bound of the i-th Hessian matrix

norm of the function k(q). These constants are useful to estimate the regions
of attraction of the two algorithms, i.e. the maximum allowed initial task
space error norm, according to Eqs. (4.24),(4.25),(4.44).

The desired constant position in the task space is

xd =
(
−0.071 −0.639 0.507 1.48 0.202 −2.22

)T

, in which the orientation is expressed by using the ZYZ Euler angles. The
considered sampling time is T = 1ms, while the initial robot configuration

is qi =
(
π/2 π/3 π/3 0 π/4 π/4 −π/4 2/3π 3/4π 3/4π 0

)T
. The

robot is used in the following simulations to show that the bounds on the
algorithm gain γ of Theorems 1 are not too restrictive. The algorithm based
on the jacobian pseudo-inverse (Eq. (4.16)) has been tested with three values
of the gain, i.e. γ = 0.5/T , γ = 1.9/T and γ = 2.01/T , the last one just
a little bit beyond the bound in (4.25). In this simulation, the algorithm
includes the redundancy resolution, performed by resorting to the classical
technique of the projector into the jacobian null space, i.e.

qh+1 = qh + γTJ†heh + T (I − J
†
hJh)q̇0h

, (4.54)
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Figure 4.16: CLIK algorithm based on the jacobian pseudo-inverse: norm
of the task space position and orientation error with γ = 0.5/T (circles, left
y-axis), γ = 1.9/T (dots, left y-axis) and γ = 2.01/T (crosses, right y-axis).

where q̇0h
= −∇(w(qh))

T and w(q) is a cost function to minimize [67]. The
distance in the joint space from the center of joint ranges has been chosen as
cost function. The resulting task space error norm is reported in Fig. 4.16
for all gain values, showing how the algorithm converges only with the gain
values less than 2/T . Figure 4.17 reports the time history of the cost function
with and without the redundancy resolution, and, in the former case, better
values are obtained. The results obtained by using the IK algorithm with
the jacobian transpose are reported in Fig. 4.18, which shows that the gain
bound found in Theorem 2 is more restrictive than those found in Theorem 1,
since with a gain γ equal to 1/(δ2T ) the algorithm still converges, whereas
the minimum value of the gain γ leading to an unstable behavior of the
algorithm is 20/(δ2T ).
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Figure 4.17: Cost function obtained from jacobian pseudo-inverse algo-
rithm with redundancy resolution (circles) and without redundancy reso-
lution (crosses).
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Figure 4.18: CLIK algorithm based on the jacobian transpose: norm of the
task space position and orientation error with γ = 0.5/(δ2T ) (circles, left
y-axis), γ = 1/(δ2T ) (dots, left y-axis) and γ = 20/(δ2T ) (crosses, right
y-axis).
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Chapter 5

Applications in robot
calibration

Exploiting the results obtained for the hand calibration step, described in
Chapter 3, a procedure for estimating the kinematic parameters of any in-
dustrial serial manipulator has been developed. The novelty of the procedure
consists in the adoption of a motion capture system, that allows a 3D position
measurement distributed along the entire kinematic chain not only of its end
effector. This enables the estimation of the kinematic parameters in a closed
form without the need to resort to any linearisation of the error function. The
robustness of the estimation algorithm against measurement noise is guar-
anteed by the adoption of multivariate statistical methods like the Principal
Component Analysis (PCA). The procedure is intended for robot manufac-
tures, who can adopt it to select the estimated kinematic parameters, to be
used in the control units of the robot for the computation of both direct and
inverse kinematics, for improving the absolute positioning accuracy of the
end effector. Both simulation and experimental results obtained in the cali-
bration of an actual industrial 6DOF robot are reported, which confirm the
effectiveness of the proposed approach. The off-line programming method of
industrial robotic work cells is rapidly catching on, enabled by modern CAD
systems. These software packages allow the user not only to draw the layout
of the work cell but also to carry out the simulation of the motion of robot
manipulators and machine tools performing the manufacturing tasks. This
feature represents a real breakthrough in the entire manufacturing process
since it has an impact in reducing the overall life cycle cost of the product be-
ing manufactured. In fact, the commissioning cost of the work cell is reduced
as well as the switch-off time of the robot for re-programming is drastically
reduced, since the simulated robot program can be directly downloaded into
the robot control system. One of the main problems for making the off-
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line programming method effective in practice is the absolute accuracy of
the robot motion within the work cell. The major source of inaccuracy is
the difference between the kinematic parameters used in the robot control
unit and the actual ones. The former are usually based on the robot de-
sign specifications, while the real parameters are affected by manufacturing
tolerances, mounting errors during robot link assembly. Differences between
nominal and real kinematic models also rise from nongeometrical errors e.g.,
link-and-joint flexibility, backlash, gear wear. Robot kinematic calibration
consists of identifying a more accurate geometrical relationship between the
joint position sensors readings and the actual position of the end-effector;
then the robot positioning software is changed according to this relationship
identified. Kinematic calibration involves four steps: modelling, measure-
ment, identification, and correction [43]. The contribution of the present
method mainly resides in the second and third steps. The measurement
system proposed here can be any commercial optical motion capture sys-
tem (mocap). Mocap systems are constituted by a set of calibrated cameras
(normally infrared) and a workstation able to reconstruct the 3D position
of markers with a typical accuracy of the order of 0.1mm. The cost of the
system is mainly affected by the resolution, speed and number of the cam-
eras. For the application at hand, neither the resolution nor the speed are
relevant parameters, since large markers can be easily placed on an industrial
robot and thus a small number (4 or 5 are usually enough) low resolution
cameras can be used to capture the typical workspace of an industrial robot.
The speed of acquisition is certainly much lower than the one required by the
most common application of these systems (recording action of human actors
in movie industry for subsequent computer animation of digital characters)
since the movements required to the robot during the calibration procedure
can be very slow. Therefore, with a limited number of low resolution and
low speed cameras, the cost of the measurement system can be even lower
than the cost of the machine to be calibrated. On the basis of the proposed
measurement system, the proposed method can be classified as an open-loop
method, thus does not require any special machinery and addition calibration
tool or fixture, again in the interest of the ease and economy of application,
in contrast to closed-loop methods which are generally more expensive and
time consuming.

Besides the limited cost needed by the metrology, the additional advan-
tage of the motion capture system combined with the specific calibration
technique proposed here is the possibility of measuring not only the position
of the robot end effector but of many other points selected on the links consti-
tuting the serial kinematic chain. This feature suggested the procedure itself,
which basically consists in capturing the motion of a number of points along
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the robot structure that allow the estimation of the rotational or translational
(depending on the joint type: revolute or prismatic) axes of the robot joints;
then simple geometric relationships can be used to derive the kinematic pa-
rameters. Similar approaches are used in biomechanics to estimate the pa-
rameters of kinematic models of the human skeleton, e.g. [38, 79, 12, 35].
For robot kinematic calibration, the same idea was firstly proposed in [9],
where a single point fixed on the robot end effector was tracked. Later on,
in [70] a similar set up was applied to calibrate a PUMA 560 robot by means
of acoustic sensors mounted on each robot link. A very similar method is
also known as Circle Point Analysis (CPA), applied using a theodolite sys-
tem in [69]. However, differently from the approach pursued here, in those
early works the plane of rotation and the center of rotation were estimated
through ordinary least square methods. In the present work, the use of the
Principal Component Analysis as a robust multivariate statistic algorithm is
proposed, that is able to provide accurate estimates of spatial directions of
minimum and maximum variance of data, with a low sensitivity to measure-
ment noise [44], which is particularly relevant in kinematic calibration [42].
In general, PCA finds a p-dimensional linear manifold minimising a scale of
the orthogonal distances of the m-dimensional data points to the manifold.
Therefore, with respect to ordinary least square fitting, PCA does not as-
sume that noise affects only observed data but it takes into account also the
case that the regressor is affected by noise, hence providing better robustness
to measurement noise.

Several advantages characterise the geometric method in comparison with
classical iterative methods. The algorithm can be used even when large errors
affect kinematic parameters, since no prior knowledge of the design param-
eters is needed in the initialisation phase of the algorithm, as usual in the
methods which only adjust these parameters to the extent that the measure-
ments provide sufficient evidence, both for serial kinematic chains [77] and for
methods suitable for parallel robots [62, 14]. Moreover, the identified joint
axes maybe expressed with respect to any coordinate system, since only the
relative position of two consecutive lines is relevant. Also, there is no need
to select poses to ensure full column rank of the error jacobian, as usually
happens for all the methods that lead to a solution based on optimisation
algorithms [81]. Finally, the adoption of a motion capture system allows to
calibrate also the absolute position of the robot, which is a key requirement
for an off-line programming system.

The rest of this chapter is organised as follows. Section 5.1 summarises
the kinematic model of the robot to be calibrated. It exploits the DH con-
vention due to its large diffusion in industrial robots, and suitably modified
in case of near parallel consecutive joint axes. Section 5.3 describe the details
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of the proposed calibration procedure both in terms of measurement process
and of data elaboration. The motion capture system used in the experiments
is detailed in Section 5.2. The features of the algorithm in terms of attain-
able performance in absence and presence of measurement noise are firstly
discussed in simulation in Section 5.4, then they are actually proved by the
experiments described in Section 5.5. The calibration of an actual industrial
robot is carried out and the results show that using the calibrated parameters
allows to increase the absolute accuracy of the robot.

5.1 Kinematic model

Given a generic serial chain manipulator with n joints, assuming to select
n frames, each attached to a link of the robot according to the Denavit-
Hartenberg (DH) convention [30], the pose of the frame attached to the last
link of the robot can be described by the homogenous transformation matrix

T 0
n(q) = T 0

1(q1)T
1
2(q2) · · ·T n−1

n (qn), (5.1)

where T i−1
i (qi) is the transformation matrix expressing the pose of frame i

with respect to frame i − 1, qi is the joint variable of joint i and q is the
vector of the n joint variables. The analytic expression of this matrix as a
function of the DH parameters is [68]

T i−1
i (qi) =




cosϑi − sinϑi cosαi sin ϑi sinαi ai cosϑi
sinϑi cosϑi cosαi − cosϑi sinαi ai sin ϑi
0 sinαi cosαi di
0 0 0 1


 , (5.2)

where ϑi, αi, ai and di are the DH parameters of link i and qi is the i-th joint
variable, i.e.

qi =

{
ϑi revolute joint
di prismatic joint

.

Hereafter, it is assumed that only the kinematic parameters, except joint vari-
ables, are subject to calibration, since for the determination of joint offsets
specific procedures exist [17], or they are usually foreseen by the standard
maintenance procedure of the robot. In case two consecutive joint axes are
near parallel, suppose j − 1 and j, the modified DH convention proposed
in [40] is adopted and the direct kinematic equation 5.1 is modified by in-
troduction an additional rotation of an angle βj about y axis of the current
frame. In detail, for a revolute joint the homogenous transformation reduces
to
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T̂
j−1

j (qj) =




cosϑj cos βj − sinαj sinϑj sin βj − sinϑj cosαj

sinϑj cos βj + sinαj cosϑj sin βj cos ϑj cosαj

− cosαj sin βj sinαj

0 0

cosϑj sin βj + sinϑj sinαj cos βj aj cos ϑj
sinϑj sin βj − cosϑj sinαj cos βj aj sinϑj

cosαj cos βj 0
0 1


 (5.3)

Note that βj does not increase the number of parameter to be actually identi-
fied, since if joint j is revolute, the parameter dj is no longer needed. If joint j
is prismatic, then dj is the joint variable and the homogenous transformation
reduces to

T̂
j−1

j (qj) =




cos βj 0 sin βj 0
sinαj sin βj cosαj − sinαj cos βj 0

− cosαj sin βj sinαj cosαj cos βj dj
0 0 0 1


 (5.4)

and, again, the number of parameters to be identified is not increased. The
choice made here of the DH convention for expressing the end-effector pose as
a function of the joint variables and the kinematic parameters has been done
because it is universally used in industrial robots and the proposed calibration
procedure is specifically intended for adoption by the robot manufacturers
to enhance the accuracy of their products. Alternative kinematic modelling
procedures exist, like those based on the Product Of Exponentials (POE) for-
mula [41, 18]. Such methods have been proposed to ensure a smooth mapping
between the kinematic parameters and the identification error, thus making
identification algorithms robust and singularity. Nevertheless, the calibration
procedures proposed based on this modelling methodology still need local lin-
earisation and algorithm iterations to get the unknown parameters, which,
also, have no clear geometrical meaning. Furthermore, even in absence of
measurement noise, the algorithms does not guarantee to obtain the true
values of the kinematic parameters. In fact, as clearly stated in [41], “the
iterative algorithm for parameter identification is convergent when the devi-
ations of the actual kinematic parameters from the nominal values are small,
and the pose measurements are reasonably chosen to make the identification-
Jacobian-matrix column full rank”. These are the typical limitations of all
the algorithms based on local linearisation of the identification error. On
the contrary, this method adopts a procedure leading to the identification
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of geometrically meaningful kinematic parameters in closed form. Also, as
it will be detailed in the next section, the presence of measurement noise is
counteracted by the purposeful adoption of statistical methods.

For the reader’s convenience, it is now recalled the geometric meaning
of the DH kinematic parameters summarised in the well-known DH table
Tab. 5.1.

Link ai αi di ϑi
1 a1 α1 d1 ϑ1
...

...
...

...
...

n an αn dn ϑn

Table 5.1: DH table

In particular

• ai is the distance between the axes of joints i and i+ 1, it is therefore
computed along the common normal of these two axes;

• di is the quote with respect to the frame fixed to link i− 1 of the point
of intersection of the common normal cited above and the axis of joint
i;

• αi is the angle between the axes of joints i and i+ 1 about the x axis
of the frame fixed to link i;

• ϑi is the angle between the x axes of the frames fixed to links i−1 and
i

In a similar way the Hayati parameter βi is defined in case of near parallel
consecutive joint axes. It is evident that once the directions in the 3D space
of all the joint axes and the position of one point of each of these axes are
known, then the kinematic parameters can be computed quite easily as it
will be detailed in Section 5.3.4.

5.2 Measurement system

The main idea is to estimate the directions of the joint axes by moving the
joints one by one. This implies that, if the joint is revolute, each point of the
following robot links moves on a circumference and all these circumferences
lies on parallel planes and the centres lay on the joint axis. If the joint is
prismatic, then each point of the following robot links moves along a straight
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Figure 5.1: Dynamic (left) and static (right) calibrators of a VICON motion
capture system.

line and all these straight lines are parallel and identify the direction of the
joint axis. Therefore, by measuring the path of at least one of such points,
the joint axes can be easily estimated for both type of joints. It is clear
that by measuring the path of a larger number of points, a higher robustness
against measurement noise or outliers is expected. Another key point which
makes the procedure quite easy to execute is that the exact location on the
link of each point to be tracked is not relevant, any point can be used; some
suggestions on how to make the selection will be given in the following. This
simple idea suggested the use of a marker-based motion capture system,
which is a natural candidate to track the motion of selected points in the 3D
space, i.e. the points where the markers are placed.

In fact, an optical motion capture system is composed by two or more
cameras (in the experimental calibration performed in Section 5.5 only four
cameras were used), a workstation connected to a host PC and a set of
reflective markers. Usually, such markers are covered by a material with a
high reflection index in the wavelength range of the cameras, typically the
infrared range. Also, to minimise the effect of lighting conditions each camera
is equipped with a light strobe synchronised with the camera shutter. These
systems are usually very easy to use since are designed also for non expert
users. The steps to perform a capture session are the following:

• placement of markers and cameras: this step is the most time
consuming since the objective is to maximise the field of view of all
the cameras as well as the number of markers visible by at least two
cameras (the minimum number needed to reconstruct the 3D position
of a marker);

• camera calibration: firstly a static calibration is needed to establish
the measurement reference frame (see the static calibrator in Fig. 5.1),
then a dynamic calibration is needed to estimate both the intrinsic
and the extrinsic parameters of the cameras. The classical “wand”
of a VICON motion capture system can be seen in Fig. 5.1; the user
has to move the wand all over the capture volume so as to make it
visible to all the cameras to calibrate. The entire calibration process
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for a 1m3 capture volume usually takes only a couple of minutes. The
result of the calibration phase usually provides residues of the markers
reconstructed position of the order of 0.1mm, which is an estimate of
the accuracy of the measurement system.

• data acquisition: this is the actual motion capture session which can
be started and terminated automatically based on an external trigger
or manually by the user;

• marker labelling: this step consists in assigning a label to each
marker so that each marker can be tracked uniquely; then a motion
hierarchy of all the markers can be also defined by specifying the so-
called “skeletal model”, which is not needed for the kinematic calibra-
tion procedure proposed in this work, because all the markers move at
the same time since the robot joints are moved one at a time;

• data recording: the data can be saved in various format, but the most
common is the c3d standard [1], where the user has an easy access to
the 3D coordinates of all the labelled markers .

5.3 Kinematic calibration procedure

As recalled in the previous section, the procedure firstly needs to estimate
the directions of the joint axis, and this is accomplished by resorting to the
PCA, both for revolute and prismatic joints. Then, the the axis have to be
located in the 3D space and this problem is solved by estimating the center
of circumference for revolute joints, while it is trivial for prismatic joints as
it will be clear later. The final step is to compute the kinematic parameters
simply by applying their geometric definition given in Section 5.1.

5.3.1 Data acquisition

Once the robot configuration is selected by following the suggestions given
in the previous section, the robot is programmed to move one joint at a
time with displacements as large as possible compatibly with the capture
volume observable by the cameras. The joint speed should be low enough
to let the motion capture system collect a number of frames, which, as a
rule of thumb, should range between 1000 and 3000. Modern mocap systems
are fast enough to let the robot move at full speed, but of course this is
not advisable to prevent exciting link and joint flexibility causing unwanted
vibrations. As said before, on each link of the robot one or more markers can
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Figure 5.2: Typical marker trajectories captured during the motion of one
revolute joint.

be attached, thus if Mi is the number of markers attached to the link i and
all the following links, when the joint i is moved there are Mi markers that
move on a circumference. Assuming to collect the same number N of frames
for all the n joints, once all the frames when the 3D position of at least one
marker has not been reconstructed (due to an occlusion) have been removed
from the capture trial1, then the data set can be organised as follows. Let
C̃ ij be the N × 3 matrix of the reconstructed positions expressed in the
measurement frame of marker j when joint i is actuated, i.e.

C̃ij =




xij1 yij1 zij1
...

...
...

xijN yijN zijN


 , j = 1, . . . ,Mi, i = 1, . . . , n. (5.5)

Typical recorded paths are reported in Fig. 5.2 for a revolute joint.

5.3.2 Identification of joint axes directions

In this step the direction of each joint axis is estimated by resorting to the
PCA technique. In particular, given a generic n× p data matrix X and let
pca(X) be the algorithm which returns the principal component coefficients2,

1This can be done very easily since the c3d format provided by the mocap system sets
a NaN for each coordinate not reconstructed.

2For example, in MATLAB c© this algorithm corresponds to the function princomp.
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then R = pca(X) is a p × p matrix each column containing coefficients for
one principal component, ordered in descending order of variance [44]. Thus,
the first column of R indicates the direction of maximum variance of the
data and the last column indicates the direction of the minimum variance of
the data.

With the aim of lowering the noise sensitivity of the estimated joint axis
direction, a unique PCA is applied to all the markers moving when joint
i is actuated. Before computing the PCA of the data, the paths have to
be suitably translated so that, for a revolute joint, all the circumferences
lay on a same plane passing through the origin, and, for a prismatic joint,
all the straight lines pass through the origin. This is easily accomplished
by subtracting to each column of the matrices C̃ij in (5.5) its mean, thus
obtaining new matrices C ij.

For each robot joint, the PCA algorithm is then applied to the (N ·Mi)×3
matrix C i constructed as

Ci =




C i1
...

CiMi


 , (5.6)

obtaining the rotation matrix3

Ri = pca(Ci), (5.7)

which, for a revolute joint, expresses the orientation of a right-handed frame
attached to the plane of the circular paths (translated as explained before
and hereafter, called the “PCA plane”), with the z axis normal to the plane.
Such frame will be hereafter called the “PCA frame”.

Now, for a revolute joint, the joint axis is the rotation axis of the motions
generating all the circular paths of the markers, hence the estimated direction
of the joint i axis, i.e., according to the DH convention, the axis zi−1 of the
frame fixed to link i − 1, is the direction normal to the plane of the paths,
i.e. the direction of minimum variance of the data that is the third column
of the matrix Ri. On the other hand, for a prismatic joint, the direction of
the join axes is the direction of maximum variance of the data, i.e. the first
column of Ri.

In conclusion, the estimated joint i axis direction is

zi−1 =

{
Ri

(
0 0 1

)T
revolute joint

Ri

(
1 0 0

)T
prismatic joint

, i = 1, . . . , n. (5.8)

3The directions provided by the pca algorithm are assumed to constitute an orthonor-
mal right-handed frame, hence Ri is a rotation matrix with det(Ri) = 1.
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5.3.3 Identification of joint axes positions

In order to actually estimate the joint axes, besides their directions, a point
belonging to each axis must be estimated. Of course, the position of these
points with respect to the measurement frame depends on the robot configu-
ration, therefore, it is hereafter assumed that the calibration motion of each
joint always starts from the same robot configuration.

If joint i is prismatic, the actual location of the joint axis is not relevant,
provided that the DH parameter ai of link i is suitably redefined selecting
the origin of the frame attached to link i on the axis of the first following
revolute joint. In case the last joint is prismatic, then the joint axis will be
selected passing through one of the markers attached to the last link, and the
mean of its coordinates during the joint motion is considered as its estimated
position.

For a revolute joint, the identification of the joint axis position can be
accomplished by estimating the center of the circular paths in the PCA plane.
This can be done by resorting to one of the numerous algorithms for circle
fitting available in the literature, e.g. [24, 61, 72]. Given a generic n ×
2 data matrix X containing the 2D coordinates of n points laying on a
plane to be fitted by a circumference, let circle_fitting(X ) denote the
algorithm which gives the coordinates of the center point of the best fitting
circumference in a least square sense. Before applying the algorithm for each
revolute joint i, the acquired marker positions in (5.5) have to be expressed in
the PCA frame so that their z coordinate is constant (except the noise) and
thus only the first two coordinates are used in the circle fitting procedure.
The N×3 data matrices (one for each marker moving when joint i is actuated)
containing the marker positions expressed in the PCA frame can be easily
obtained as

pcaC̃ ij = C̃ ijRi, j = 1, . . . ,Mi, (5.9)

while the N × 2 data matrices with the x and y coordinates only are

xyC̃ij =
pcaC̃ij




1 0
0 1
0 0



 , j = 1, . . . ,Mi. (5.10)

Then, for each marker j, the center of the best fitting circumference is ob-
tained as

xycij = circle_fitting(xyC̃ij) (5.11)

and its 3D coordinates in the measurement frame are obtained by using as z
coordinate the mean z̄ij of the third column of the matrix pcaC̃ij , discarded
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before in the circle fitting procedure, and by rotating the data back in the
measurement frame through the rotation matrix Ri, i.e.

cij = Ri

(
xycij
z̄ij

)
. (5.12)

Naturally, until now, for each revolute joint i, Mi positions of the joint axis
have been estimated, one for each marker moving when the joint is actuated.
As the actual location of the axis, the centre point estimated with the lower
residual is selected, i.e.

ci = cī, with ̄ = arg min
j=1,...,Mi

MSEj , (5.13)

where MSEj is the mean square error obtained with the circle_fitting

algorithm used in (5.11). Alternative methods could be used which use all
the markers at the same time, like the one proposed in [15] for determining
in closed form the centre of rotation of a spherical joint, but suitably adapted
for a rotational joint. However, such method is based on the computation
of a QZ factorisation to solve a generalised eigenvalue problem and then on
the selection of the smallest positive eigenvalue. In presence of noise, the
smallest positive eigenvalue is not always the one associated to the best fit
and thus the numerical implementation of the algorithm is problematic, since
the choice of the right eigenvalue depends on the noise level.

5.3.4 Computation of the kinematic parameters

As said, the joint readings are assumed accurate enough since specific meth-
ods can be used to correct them, e.g. [17] and references therein. Therefore,
only actual kinematic parameters will be computed based on their definitions
given at the end of Section 5.1.

These definitions firstly require to identify the frames attached to each
link. According to the DH kinematic model recalled in Section 5.1, the zi

axis is selected along the axis of joint i+ 1, the xi axis is selected along the
common normal to axes zi−1 and zi computed by following the procedure
outlined in 5.3.5 if the consecutive joint axes are parallel or not, and the
procedure outlined in 5.3.6 if the axes are near parallel. The yi axis is
simply obtained to get a right-handed frame as yi = xi × zi. The origin Oi

of each frame is selected at the point of intersection of the common normal
of axes zi−1 and zi with the zi axis, when the axes are non parallel. If the
axes are parallel then the DH convention suggests to select the origin Oi so
as to set di = 0 if joint i is revolute, otherwise Oi can be selected, e.g., at
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the mechanical limit of the joint range. If they are near parallel the origin is
selected according to (5.22) as explained in 5.3.6.

For each link i, connecting joints i and i+ 1, the computation of the pa-
rameter ai can be done by computing the distance between the two lines with
directions zi−1 and zi obtained in Eq. (5.8) and passing through the points
ci and ci+1 obtained in (5.13), respectively. As discussed in the previous
subsection, ci is obtained as in Eq. (5.12) if joints i is revolute, or, if joint i
is prismatic, as the location of the axis of the first following revolute joint.
The distance between two lines can be obtained in several manners, here the
algorithm reported in 5.3.5 is adopted. In particular, Eq. (5.18) is used for
parallel axes, while Eq. (5.20) is used for non parallel axes. To handle the
case of near parallel axes, the Hayati convention is used as explained in 5.3.6.

The parameter di is computed only for revolute joints and it set to zero
both in the case the axes zi−1 and zi are parallel or near parallel4. In case
of non parallel axes, it is computed as the distance between the points of
intersection of the common normals of two consecutive joints that can be
easily found as specified in 5.3.5.

The parameter αi, i.e. the angle about axis xi between the joint axes
zi−1 and zi, can be computed by observing that from Eq. (5.2) the rotation
matrix Ri

i−1 expressing the orientation of frame i− 1 with respect to frame
i can be easily extracted as

Ri
i−1 =

(
xi
i−1 yi

i−1 zi
i−1

)
=




cosϑi sin ϑi 0
− sin ϑi cosαi cosϑi cosαi sinαi

sinϑi sinαi − cos ϑi sinαi cosαi


 ,

(5.14)
and thus, the angle αi can be computed as5

αi = Atan2(zi−1y , zi−1z), (5.15)

where zi−1y and zi−1z are the second and third component of the vector zi
i−1

expressed in frame i. This vector can be obtained from the relationship

zi
i−1 = RT

i zi−1 =
(
xi yi zi

)T
zi−1

where the axis zi−1 is estimated in (5.8) and the rotation matrix Ri express-
ing the orientation of frame i with respect to the base frame is known once
the axes of the frame attached to link i have been estimated as explained at
the beginning of this section.

4This is established as explained in 5.3.5.
5The function Atan2(b, a) is defined as the phase of the complex number a+ ib.
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The parameter ϑi, computed only for prismatic joints as the angle between
the axes xi−1 and xi about axis zi−1, is determined in a similar way. By
inspecting the rotation matrix in (5.2), the angle ϑi can be computed as

ϑi = Atan2(xiy , xix), (5.16)

where xiy and xix are the second and first component of the vector xi−1
i

expressed in frame i− 1. This vector can be obtained from the relationship

xi−1
i = RT

i−1xi =
(
xi−1 yi−1 zi−1

)T
xi,

where all the axes are known once the axes of the frames attached to links
have been estimated as explained at the beginning of this section. Actually,
the determination of the angle ϑi can be carried out also for revolute joints
and this allows to calibrate also the offsets of the joint angular sensors. It is
sufficient to place the robot in a given configuration and move one joint at a
time of a given angular displacement, the difference between the computed
ϑ and the commanded displacement is the sought offset.

The additional parameter βi, foreseen by the Hayati convention [40], can
be computed, for a revolute joint, by taking the transpose of the rotation
matrix in (5.3) and by inspection it is easy to derive that

βi = Atan2(−zix , ziz), (5.17)

where zix and ziy are the second and first component of the vector zi
i ex-

pressed in frame i. This vector can be obtained from the relationship

zi
i = RT

i zi =
(
xi yi zi

)T
zi,

where all the axes are known once the axes of the frames attached to links
have been estimated as explained at the beginning of this section. The same
procedure can be applied for a prismatic joint taking into account the trans-
pose of the rotation matrix in (5.4).

5.3.5 Common normal and distance between two lines

The following algorithm for the computation of the distance between two
lines is used to compute the ai DH parameters. Identifying a line by the
couples of the unit vector v of its direction and a point with position vector
p, the distance of two lines {v1,p1} and {v2,p2} is computed in different
ways if the lines are parallel or not. To decide if they are parallel or not, the
following measure is computed

a = ||vT
1 v2| − 1|
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Figure 5.3: CAD drawing of the Mitsubishi Melfa RV-2A industrial arm used
in both simulation and experiments.

and compared to the two thresholds a1 = 10−6 and a2 = 10−3 selected by
carrying out a number of numerical simulations.

If a < a1 then the lines are parallel and the distance is computed as

d = ‖p2 − p1 + (p1 − p2)
Tv1v1‖. (5.18)

In this case, the direction of the common normal is uniquely defined (while
its location is not) as

n = (p2 − p1 + (p1 − p2)
Tv1v1)/d. (5.19)

If a > a2 then the lines are not parallel and the distance is computed as

d = ‖p1 + t1v1 − p2 − t2v2‖ (5.20)

where the vector t = (t1 t2)
T is obtained as

t =

(
−1 vT

1 v2

−vT
1 v2 1

)−1(
(p1 − p2)

Tv1

(p1 − p2)
Tv2

)
.

Note that the points with positions p1+t1v1 and p2+t2v2 are the intersections
of the lines with the common normal of the two lines. This allows to obtain
also the direction of the common normal to two lines, as the difference of this
two points, namely

n = (p1 + t1v1 − p2 − t2v2)/d. (5.21)
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Figure 5.4: Picture of the Mitsubishi Melfa RV-2A industrial arm used in
both simulation and experiments (three cameras and reflective markers at-
tached to the robot links are also visible).

If a1 ≤ a ≤ a2 then the lines are considered near parallel and the DH
parameter ai is not computed as the distance between the two lines but
according to the Hayati convention.

5.3.6 Hayati convention

If joint axes zi−1 and zi are near parallel, the direction of axis xi of the frame
fixed to link i is selected as the line passing through the origin Oi−1 of frame
i− 1 and the point of intersection Oi of axis zi and the plane orthogonal to
axis zi−1 passing through the origin Oi−1 of frame i − 1 (see Fig. 5.5). To
compute the position of this point of intersection, the following algorithm
can be used.

Using the same notation of 5.3.5, given two lines {v1,p1} and {v2,p2}, a
point with position p on the plane passing through the point with position
p1 and orthogonal to the first line is such that

(p− p1)
Tv1 = 0.
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Figure 5.5: Hayati convention for near parallel revolute joints.

The point with position p belongs also to the second line if

(p2 + tv2)
Tv1 = 0 ⇒ t =

(p2 − p1)
Tv1

vT
2 v1

,

where t is the parameter of the parametric equation of the second line p =
p2 + tv2. Therefore, the sought point of intersection has position

p2 +
(p2 − p1)

Tv1

vT
2 v1

v2 (5.22)

Of course, the expression above is meaningful only if the two lines are not
orthogonal, and this is certainly true in case the Hayati convention has to
be used, i.e. the two lines are near parallel. In such a case, the xi axis is
selected as

xi =
oi − oi−1

‖oi − oi−1‖
,

where oi, computed using Eq. (5.22), and oi−1 are the position vectors of the
points Oi and Oi−1 defined above, respectively.

5.4 Simulations

In order to verify that the algorithm is actually able to correctly estimate
the kinematic parameters of an industrial manipulator, a simulation study
has been performed by means of the MATLAB c© Robotics Toolbox [22].
The kinematic model of a Mitsubishi Melfa RV-2A industrial arm has been
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defined. Fig. 5.3 reports the CAD drawing of the arm, which is the same that
will be experimentally calibrated as described in Section 5.5 and depicted in
Fig. 5.4, where also three of the four cameras used for the calibration are
visible together with some of the reflective markers attached to the robot
links.

The purpose of the first simulation case study is to show that the iden-
tification procedure is correct, in the sense that it is able to produce the
true kinematic parameters if the measurements are not affected by noise. Of
course, in simulation the true kinematic parameters to be correctly identified
are those used in the model exploited to fictitiously generate the measure-
ments, namely the nominal one reported in Tab. 5.2.

Link ai [m] αi [deg] di [m] ϑi [deg]
1 0.100 90.0 0.000 q1
2 0.250 0.000 0.000 q2
3 0.130 90.0 0.000 q3
4 0.000 −90.0 0.250 q4
5 0.000 90.0 0.000 q5
6 0.000 0.000 0.085 q6

Table 5.2: Nominal kinematic parameters of the Melfa RV-2A arm.

Once the correctness will be proved, a second simulation case study will
be carried out to quantify the effects of measurement noise on the proposed
calibration algorithm.

The marker trajectories (see Fig. 5.6 for an example) have been generated
by assuming one marker attached to each link and by placing the base frame
of the robot in a location different from the location of the frame 0 so as
to simulate that the 3D marker positions are acquired with respect to a
measurement frame other than the frame 0 of the robot. Moreover, the
initial configuration of the robot has been selected equal to the one that will
be used in the experiments and chosen so as to maximise the range of motions
of the robot joints seen by the cameras, i.e.

qi = [−41.0 64.0 74.0 14.0 −6.0 −3.0]T deg.

By following the four steps of the procedure described in Section 5.3, the
kinematic parameters have been correctly identified with an error of the or-
der of the floating point double precision. In particular, the data acquisition
performed through the motion capture system has been substituted by the
synthetic generation of the 3D marker positions. The results of the third
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Figure 5.6: Simulated marker trajectories without measurement noise (joint
2 moving).

intermediate step involving the circle fitting of the marker trajectories pro-
jected on the PCA xy plane, identified in the second step, are reported in
Fig. 5.7. The mean square errors MSEj in 5.13 are all of the order 10−27,
the floating point double precision. Note that for each joint only the esti-
mated circumference corresponding to the minimum square error has been
displayed.

In the second case study, a zero mean Gaussian noise with a standard
deviation of 10−3m, much larger than the typical standard deviation of the
noise affecting optical motion capture system, has been added to the marker
trajectories in all directions. The resulting errors on the identified parameters
are reported in Tab. 5.3. It is evident how the algorithm is able to effectively
counteract the presence of noise since the obtained errors are significantly
lower than the standard deviation of the measurement noise. This can be
ascribed to the noise reducing effect of both the PCA algorithm and the least
square circle fitting algorithm.

Notably, the angle between joint axes 2 and 3 has been estimated close
enough to zero such that the axes have been considered parallel and thus
the Hayati convention has not been used. Therefore, to test also this part
of the algorithm an additional case study has been carried out by artificially
modifying the angle α2 setting it to the value 0.57 deg with a null β2 angle. In
this case, the algorithm estimated the angles α2 = 0.58 deg and β2 = 0deg,
again with a small error.
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Figure 5.7: Estimated circumferences on the PCA plane in the simulated
calibration.

Link ∆ai [mm] ∆αi [deg] ∆di [mm]
1 0.2 0.0000 0.0
2 0.2 0.0057 0.0
3 0.1 0.0172 0.0
4 0.1 0.0115 0.2
5 0.1 0.0115 0.1
6 0.0 0.0000 0.0

Table 5.3: Identification errors obtained in the second simulation case study
(measurement noise with 10−3m standard deviation).

5.5 Experimental results

For the experimental kinematic calibration, the initial configuration of the
robot has been selected equal to the one used in the simulation, the range of
motion of each joint is reported in Tab. 5.4. The robot has been programmed
to move one joint at a time with a 4% of speed override, which led to capturing
6000 samples, and only about 3000 of which have been used after removing
all the samples where not all markers are visible.

The markers have been attached to the robot links as shown in Fig. 5.4
and a total of 11 markers have been used, two for each link except for the
last link where only one marker has been attached. Once the data (3D
marker positions) have been acquired, the second and third steps of the pro-
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Joint qmin [deg] qmax [deg]
1 −43.0 125.0
2 2.0 92.0
3 52.0 150.0
4 −56.0 160.0
5 −40.0 80.0
6 −54.0 155.0

Table 5.4: Range of motion of the robot joints for the experimental calibra-
tion.
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Figure 5.8: Estimated circumferences on the PCA plane in the experimental
calibration.

cedure have been applied to estimate the joint axes directions and locations.
Figure 5.8 shows the estimated circumferences best fitting the marker tra-
jectories projected on the PCA plane. As done for the simulation results,
only one circumference for each joint axis has been plotted and the obtained
mean square errors are reported in Tab. 5.5. The last step of the procedure
led to the estimated kinematic parameters reported in Tab. 5.6. Of course,
in the experimental phase it is not possible to explicitly compute the estima-
tion errors of the parameters, therefore an additional experiment has been
carried out to show how the use of the estimated kinematic parameters in
lieu of the nominal ones can significantly improve the positioning accuracy
of the robot. To this aim, the position of the robot end-effector has been
acquired still using the motion capture system in 20 different locations and
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Joint MSE [m]
1 3.0 · 10−9
2 3.4 · 10−9
3 3.7 · 10−7
4 2.4 · 10−8
5 1.7 · 10−8
6 3.5 · 10−8

Table 5.5: Mean square errors of the circle fitting algorithm for the experi-
mental calibration.

it has been compared to the position computed using both the nominal and
the estimated kinematic parameters. The obtained errors are reported in
Fig. 5.9, where an average improvement of about 50% of the accuracy has
been obtained with the estimated kinematic parameters.

Link ai [m] αi [deg] di [m]
1 0.0995 89.957 0.0000
2 0.2545 0.1590 0.0000
3 0.1259 89.887 0.0013
4 0.0007 −89.724 0.2492
5 0.0010 89.799 0.0004
6 0.0000 0.0000 0.0983

Table 5.6: Calibrated kinematic parameters.

5.6 Conclusions

The proposed calibration procedure for estimating the kinematic parameters
of an serial manipulator adopts a measurement system allowing a 3D position
measurement distributed along the entire kinematic chain not only of its
end effector. This novel measurement process enables the estimation of the
kinematic parameters in a closed form without the need to resort to any
linearisation of the error function. Another characteristic of the proposed
algorithm is its robustness against measurement noise, which is guaranteed
by the adoption of the PCA method to estimate the directions of the robot
joint axes. The kinematic calibration procedure, easy to set up and fast to
carry out, appears suitable for robot manufactures, who can use the estimated
kinematic parameters in the control units of the robot for the computation
of both direct and inverse kinematics to improve the positioning accuracy of
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Figure 5.9: Absolute accuracy improvement after the experimental calibra-
tion.

the end effector. Both simulation and experimental results obtained in the
calibration of an industrial 6DOF robot demonstrated the effectiveness of the
proposed approach in improving the positioning accuracy of the manipulator.
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Chapter 6

Conclusions and future work

In this work, a complex hardware/software architecture has been proposed,
that has the very ambitious objective to solve the problem of the observa-
tion of human manipulation. With the diffusion of anthropomorphic robotic
systems provided with human-like hands, this problem has become very rele-
vant and the request of accurate observation systems at finger level has been
increasing more and more. On the other hand, methods in literature and
commercial system do not offer effective solutions for this issue. The meth-
ods proposed and developed in this work can be adopted by the robotics and
virtual reality experts to perform an accurate and reliable hand observation,
both for research applications and for developing a new generation of com-
mercial systems. Even if the experimental result are really encouraging, some
open problems still remain and possible improvements can be investigated.
At architectural level, an interesting theoretical problem is the quantitative
evaluation of the measurement error made by the system in the estimation
of hand joint angles, since a quantitative ground truth is not available. A
mathematical study could be carried out to obtain a theoretical estimation
of the error probability density functions after the refinement applied by the
high-level sensor fusion module.

Brief considerations about conclusions and possible improvements at sin-
gle component level are discussed in Sections 6.1, 6.2, 6.3.

6.1 Sensing system

A low-cost data glove prototype has been presented, whose performances are
comparable with the more complex and expensive commercial models. The
data glove is particularly suitable in measurement systems for observing the
human manipulation based on sensor fusion. Future work will consist in im-
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Figure 6.1: Tactile sensor concept based on LED-phototransistor couples

proving the installation procedure of the sensing elements and of introducing
additional conditioning electronics, in order to obtain a calibration curves less
dependent from the performer and to evaluate the data glove performance
in a more rigorous mode, for example as proposed in [32] and in [78].

Another absolutely significative advancement would consist in providing
the data-glove with novel tactile sensors developed at Automatic Control
Laboratory of Second University of Naples, instead of the commercial ones
used in this work. The objective of such sensors is to provide information
about the contact point/area between the fingertips and the manipulated
object, together with an estimation of both the normal and tangential com-
ponents of the contact force. The direction of the contact forces is often
neglected , but it can bring several advantages in the accurate observation of
human manipulation as well as in control of anthropomorphic robotic hands.
The novel tactile sensors are based on the use of LED-phototransistor couples
and a deformable elastic layer positioned above the optoelectronics devices
(see Fig. 6.1). For more details about the novel developed tactile sensors
see [26].

In order to have cheaper but relatively accurate observation systems,
lower-cost hardware able to measure the positions of markers in space might
be considered. An interesting issue would be, for example, to investigate
the possibility of adopting the new commercial device Kinect [3] as an input
of the low-level sensor fusion module instead of the motion capture system
or the possibility to include it within the proposed architecture as a third
kinematic data source.
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6.2 Low-level module

In order to obtain a more accurate estimation of joint angles, more advanced
Bayesian sensor fusion methods could be evaluated, e.g. Unscented Kalman
Filter (UKF) and Particle Filters (PF). The UKF presents the same assump-
tions as the EKF but seems to have better performances in terms of accuracy
and execution time. PF, on the other hand, offers the interesting possibility
to consider non-Gaussian noise both in the state-update function and in the
measurement-state relation.

6.3 High-level module

A method to improve the human motion observation (i.e. estimation of
the hand pose in the space and of joint angles), exploiting the fingertip
contact forces measurements, has been presented. Since a Jacobian-based
IK method has been adopted, it is possible to apply the correction on-line.
The measurements from the sensing system are aimed at giving the correction
algorithm a good starting point. Then, the better the sensing system, the
faster the correction and the more “human like” the corrected posture are
expected to be. The future work will be aimed at two objectives. The first
objective will be to add other features, keeping the possibility of an on-line
execution. For example, an interesting challenges to afford would be the
definition of methods more robust to noise in the force measurements to
decide if a finger is in contact with the object (e.g. based on probabilistic
theory or fuzzy logic). The second objective will consist in exploiting the
novel tactile sensors described in Section 6.1. The knowledge of contact
points and the components of the forces would allow, if used in a smart way,
a more precise correction of the hand posture and an extended definition of
kinetostatic consistency.
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