Dottorato di ricerca in INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE

Ciclo n. 40

Coordinatore: Minardo Aldo

DIPARTIMENTO DI INGEGNERIA

Università degli Studi della Campania "Luigi Vanvitelli"

Configurazione					
Il dottorando deve presentare il Piano Formativo contenente le attività per tutti e tre gli anni di corso	Si				
Il dottorando deve presentare il Piano Formativo contenente solo le attività dell'anno in corso	No				
Data entro cui il dottorando può presentare il Piano Formativo	31/12/2024				
Numero massimo di modifiche al Piano Formativo che il dottorando può richiedere ogni anno	0				
	1				

Vincoli sul numero di CFU previsti per Tipologia di attività e anno

Anni	Attività Didattiche Programmate	Altre Attività Didattiche	Attività Formative di Ricerca
I ANNO	11.0 - 1000.0 CFU	0.0 - 1000.0 CFU	21.0 - 1000.0 CFU
II ANNO	0.0 - 1000.0 CFU	3.0 - 1000.0 CFU	39.0 - 1000.0 CFU
III ANNO	0.0 - 1000.0 CFU	0.0 - 1000.0 CFU	39.0 - 1000.0 CFU

Categoria di default - Attività Didattiche Programmate							
Configurazione della categoria per anni di riferimento: I, II, III							
Numero attività obbligatorie	0						
Numero minimo di CFU	0.0						

Aggiunta attività presunte

No

Aggiunta attività proposte

No

Denominazione insegnamento	Descrizione	Docenti	Curriculum di riferimento	Periodo erogazione	Verifica finale	Obblig.	CFU	Ore	Anni
Compatibilità elettromagnetica Industriale	Il corso descrive i principali problemi che nascono dall'uso combinato di dispositivi elettromagnetici in ambito industriale, i metodi per la caratterizzazione delle interferenze e le tecniche per la loro riduzione	Formisano Alessandro	Conversione Dell'Energia	I SEMESTRE	Si	No	3.0	12	II III
Modellazione Geometrica e Calcolo Parametrico	Il corso fornisce gli strumenti per realizzare rapidamente un modello geometrico in ambiente CAD 3D e sfruttare la natura parametrica del modello ottenuto per condurre CAD-CAE Design Scenarios in ottica Optimization.	Gerbino Salvatore		SETT	Si	No	3.0	12	I
Simulazione numerica di flussi turbolenti	Il corso introduce alle metodologie più diffuse in ambito ingegneristico e alla relativa modellistica fisico-matematica per la simulazione numerica di flussi turbolenti.	De Stefano Giuliano	Ingegneria Aerospaziale	II SEMESTRE	Si	No	3.0	12	I II III
Academic and professional English - Module 1	Objective: to develop written and oral communicative competence in terms of appropriacy, fluency and accuracy. Assessment: The approach is a combination of continuous assessment and end of course exam. Formative assessment (assessment for learning) tasks will be assigned throughout the course in the form of homework assignments or projects. These account for part of the students' individual study efforts that enable them to earn the credits connected to each teaching hour. The "end of course" summative assessment (assessment of learning) certifies that all the minimum course requirements have been met.	Nuzzo Giuseppina		1 year period	Si	Si	8.0	32	I
Academic and professional English - Module 2	Objective: to enhance written and oral communicative competence in terms of appropriacy, fluency and accuracy. Assessment: The approach is a combination of continuous assessment and end of course exam. Formative assessment (assessment for learning) tasks will be assigned throughout the course in the form of homework assignments or projects. These account for part of the students' individual study efforts that enable them to earn the credits connected to each teaching hour. The "end of course" summative assessment (assessment of learning) certifies that all the minimum course	Nuzzo Giuseppina	Comune	1 year period	Si	No	7.0	28	I

	requirements have been met.								
Al Confine tra Affidabilità e Qualità della Tensione nei Sistemi Elettrici per l'Energia	Nel campo dei Sitemi Elettrici per l'Energia, tradizionalmente, l'affidabilità dell'alimentazione (Supply Reliabilirty-SR) e la qualità della tensione (Voltage Quality-VQ) sono state trattate separatamente, sia dalla comunità scientifica sia da quella tecnica. Al giorno d'oggi questa suddivisione non è più attuale: gli utenti sensibili, che utilizzano tecnologie sempre più avanzate, soffrono di problemi di VQ legati a brevi interruzioni e cali di tensione, nonché di problemi di SR legati a interruzioni lunghe. L'implementazione del paradigma delle Smart Grid potrebbe essere fortemente condizionata dalla sempre maggiore presenza di carichi sensibili, presenza che rende della massima importanza ridurre la probabilità e le conseguenze dei problemi di SR e VQ, in una visione integrata.	Langella Roberto Testa Alfredo	Conversione Dell'Energia	I SEMESTRE	No	No	3.0	12	I II III
Competenze Avanzate di Deep Learning	Elementi di base di Machine Learning, differenza tra Machine Learning e Deep Learning, focus su Reti Neurali per Deep Learning (ricorrenti, convolutive, LSTM) e uso di librerie Python per la loro implementazione	Esposito Antonio		GIU-LUG	Si	No	3.0	12	I II
Corso avanzato di LabView Virtual Measurement Instrumentation	Ambiente di sviluppo professionale di tipo grafico per l'acquisizione, elaborazione e gestione dei dati: introduzione, paradigma del linguaggio di programmazione grafica, uso dei cicli, delle strutture dati, delle strutture decisionali; moduli di acquisizione dati, driver e librerie di strumenti virtuali.			GEN-FEB	No	No	3.0	12	I II III
Corso Avanzato in Modelli Numerici per l'Ingegneria su dispositivi GPU	Architettura GPU, modello di memoria, linguaggi di programmazione e librerie esistenti. Metodi numerici accelerati per l'ingegneria su GPU. Il corso è rivolto principalmente ai dottorandi del curriculum in Ingegneria Elettronica e in Ingegneria Informatica	Chiariello Andrea Gaetano	Ingegneria Informatica	MAG-GIU	Si	No	3.0	12	II
Data Management	The course, organized by the Doctorate School in Polytechnics and Basic Sciences, is mandatory. Data are now recognized as a major organizational resource to be attained and managed like other assets such as land, labour and capital. The ability to structure, access, manage and leverage this valuable resource is becoming more and more critical to all organizations, large or small, public or private. This course is designed to present the fundamental concepts and theories in data	Venticinque Salvatore		II Semester	No	Si	3.0	12	I

	management, in order to promote their application to research activities and professional practice. An examination of Database Management Systems, database architectures, the role of data in decisional processes and the processes that guide the data lifecycle will be a focus of the course. Due to the importance of personal data in scientific research, it is mandatory to include in the course the main concepts about personal data protection regulation.								
Economia Circolare	L'idea di CE considera un'economia trasformativa che ridefinisce i modelli di produzione e consumo, ispirata ai principi degli ecosistemi e riparativa dal design, che aumenta la resilienza, elimina gli sprechi e crea valore condiviso attraverso una maggiore circolazione dei flussi materiali e immateriali. Questo concetto mette in evidenza i fattori chiave del paradigma: efficienza delle risorse, crescita economica sostenibile, protezione dell'ambiente e sviluppo sociale.	Marino Alfonso		II SEMESTRE	Si	No	3.0	12	I II III
Elementi di Analisi Funzionale per l'Ingegneria	Il corso si propone di introdurre i fondamenti di teoria delle funzioni e di analisi funzionale con particolare riferimento alla teoria delle equazioni integrali e della loro discretizzazione.	Solimene Raffaele		MAR	No	No	3.0	12	I
Elettronica di Potenza e Tecniche di Ottimizzazione per Sistemi di Energy Harvesting	Il Corso fornisce agli allievi gli strumenti principali per l'ottimizzazione delle architetture di elettronica di potenza per sistemi di energy harvesting, con particolare riferimento all'energy harvesting da vibrazioni. In particolare, il corso è dedicato all'analisi e all'ottimizzazione di Convertitori AC/DC Passivi con relative Tecniche di Maximum Power Point Tracking, di Architetture e Tecniche di Controllo per l'emulazione dell'impedenza ottimale, di Architetture e Tecniche di Controllo per l'applicazione di Tuning Meccanico per via Elettrica. Il corso fornisce, inoltre, le principali nozioni per la simulazione numerica delle architetture di elettronica di potenza per sistemi di energy harvesting in ambiente PSIM-LTSPICE	Costanzo Luigi	Conversione Dell'Energia	DA CONCORDARE CON GLI STUDENTI	Si	No	3.0	12	I II III
Elettronica di potenza per applicazioni fotovoltaiche	Il corso fornisce agli studenti competente specifiche sulle principali architetture di tipo stand-alone e grid-connected, su topologie, modellazione statica e dinamica e tecniche di controllo dei convertitori switching per applicazioni fotovoltaiche, sulle linee guida per l'ottimizzazione delle tecniche di Maximum Power Point Tracking maggiormente utilizzate	Costanzo Luigi	Conversione Dell'Energia	DA CONCORDARE CON GLI STUDENTI	Si	No	3.0	12	I II III

Equazioni differenziali alle Derivate Parziali: Applicazioni per l'Ingegneria	Il corso analizza i modelli matematici alla base di molti fenomeni fisici di interesse per l'ingegneria, proponendone la classificazione in termini di equazioni differenziali, e discutendo i metodi di risoluzione più diffusi	Formisano Alessandro		I SEMESTRE	Si	No	3.0	12	I II
Fenomeni di urto dei sistemi di trasporto: impatto strutturale e protezione degli occupanti	Descrizione e analisi di casi studio inerenti il comportamento a crash di veicoli	Lamanna Giuseppe	Ingegneria Meccanica	SETT	Si	No	3.0	12	I II III
Fondamenti di fluidodinamica dei rotori aperti e intubati	•Rotori aperti e intubati - Introduzione: classificazione e applicazioni, triangoli di velocità, curve caratteristiche. •Teoria del momento assiale: modello del disco attuatore, limite di Betz-Joukowsky •Teoria del momento generalizzata: equazioni del moto, fattori di correzione per le perdite all'apice delle pale. •Teoria dell'elemento di pala: forze aerodinamiche, angoli di flusso e metallici, espressioni locali per la spinta assiale e la coppia. •Blade-Element/Momentum Theory: algoritmo di soluzione, correzioni empiriche •Progettazione: valutazione della distribuzione radiale della corda e dell'angolo di svergolamento della pala tramite i modelli di Betz e di Glauert.		Ingegneria Meccanica	GIU-LUG	No	No	3.0	12	I II III
Fondamenti Teorici e Modellazione Circuitale di Sistemi di Energy Harvesting	Il Corso fornisce agli allievi gli strumenti per la modellazione e l'analisi di massima dei sistemi di energy harvesting, con particolare riferimento all'energy harvesting da vibrazioni. La prima parte del corso è dedicata alla modellazione circuitale di sistemi di energy harvesting da vibrazioni sia di tipo "low power" (elettromagnetici e piezoelettrici) che di tipo "high power" (shock absorbers per applicazioni automotive). La seconda parte del corso è dedicata all'introduzione dei fondamenti teorici delle principali tecniche di massimizzazione della potenza estratta dagli harvester: tuning meccanico e tuning elettrico. Il corso fornisce, inoltre, le principali nozioni per la simulazione numerica di sistemi di energy harvesting in ambiente PSIM-LTSPICE.	Costanzo Luigi	Conversione Dell'Energia	DA CONCORDARE CON GLI STUDENTI	Si	No	3.0	12	I II III
Industrial Skills	Il corso è organizzato dall'associazione Prospera. "Prospera" è un'associazione non profit costituita nel 2009 da un gruppo di manager, docenti, imprenditori e professionisti, che si pone come obiettivo quello di mettere a disposizione dei giovani esperienze, competenze e risultati ottenuti dai soci nella loro vita professionale.	Minardo Aldo Cennamo Nunzio	Comune	Ottobre - Novembre	Si	No	15.0	60	I
Maintenance management in smart manufacturing systems	L'obiettivo del corso è quello di fornire agli studenti le basi degli approcci manutentivi nei moderni sistemi produttivi caratterizzati		Ingegneria Meccanica	DA CONCORDARE CON GLI	No	No	3.0	12	I II III

	dall'affermarsi delle nuove tecnologie. Il programma inizia con alcuni richiami alle classiche tecniche manutentive, seguite dall'introduzione di tecniche di analisi dei guasti, quali FMEA/FMECA e Fault tree analysis. Infine, verranno esplorati i più recenti approcci manutentivi (Condition base maintenance e manutenzioje predittiva).			STUDENTI					
Metodi di Ottimizzazione	Il corso si propone di illustrare la formulazione dei problemi di progetto ottimo e dei problemi inversi di interesse ingegneristico e di presentare i principali metodi per la loro soluzione, introducendo gli algoritmi deterministici e stocastici per l'ottimizzazione, compresi i metodi basati sul machine learning.	Formisano Alessandro		I SEMESTRE	Si	No	3.0	12	I
Metodi di ottimizzazione della gestione della produzione industriale	Il corso ha lo scopo di sviluppare conoscenza ed attitudine alla risoluzione di problemi relativi alla gestione della produzione industriale utilizzando metodi matematici esatti. In particolare, i temi affrontati sono: (i) i problemi di ottimizzazione; (ii) il Simplesso; (iii) Problema del minimo percorso e metodi di risoluzione; (iv) Programmazione Lineare Intera (cenni).	Fera Marcello		I SEMESTRE	No	No	3.0	12	I
Metodi Numerici Applicati all'Ingegneria Aerospaziale: la Soluzione dei Campi di Moto di Velivoli	Lo scopo del corso è fornire gli strumenti teorici e numerici (CFD) da applicare per ottenere le prestazioni aerodinamiche di svariate configurazioni di velivoli, da quelle impiegate dall'Aviazione Generale fino al moderno Trasporto Civile Supersonico.	Pezzella Giuseppe	Ingegneria Aerospaziale	GIU	No	No	3.0	12	I II III
Metodi numerici per la soluzione di problemi mal-posti	Il corso si propone di introdurre gli studenti ai problemi mal-posti. Esso fornisce una panoramica aggiornata sui differenti metodi per la loro soluzione seguendo un rigoroso approccio matematico.	Maisto Maria Antonia		GIU-LUG	No	No	3.0	12	I II
Metodi Numerici per modelli non lineari e/o differenziali	Vengono trattate le tecniche di risoluzione di problemi inversi, di sistemi algebrici non lineari, di equazioni differenziali ordinarie e alle derivate parziali.	Chiariello Andrea Gaetano		MAG-GIU	Si	No	3.0	12	II
Modelli e Metodi Numerici per l'Ingegneria	Il corso tratta le tecniche di interpolazione numerica, di quadratura e derivazione numerica, le tecniche di risoluzione di sistemi lineari sia con metodi diretti che iterativi	Chiariello Andrea Gaetano		MAG-GIU	Si	No	3.0	12	I
Modelli e metodi numerici per l'ingegneria, l'algebra lineare e le librerie numeriche	Soluzioni e sistemi lineari di equazioni: soluzioni dirette e iterative. Decomposizione LU, decomposizione Eigen, decomposizione QR, decomposizione a valori singolari. Introduzione al linguaggio Python, librerie numeriche, stato dell'arte. Introduzione al calcolo ad alte prestazioni.	Chiariello Andrea Gaetano		MAG-GIU	Si	No	3.0	12	I

Navigazione satellitare e sistemi GNSS	Il corso offre gli elementi essenziali per una comprensione di base delle fenomenologie, metodi e strumenti coinvolti nelle problematiche di posizionamento satellitare, e fornisce gli elementi progettuali e i modelli matematici relativi ai sistemi GNSS operativi (GPS, GLONASS, NAVIC/IRNSS, QZSS) e in via di completamento (COMPASS, Galileo).	Ponte Salvatore	Ingegneria Aerospaziale	GIU-LUG	Si	No	3.0	12	I II III
Patent as an Inventive Research Activity	The course, organized by the Doctorate School in Polytechnics and Basic Sciences, is mandatory. The course focuses on patenting principles, practices and strategies in the processes of intellectual property management and enhancement and technology transfer at national and international level. The lessons aim to promote the exploitation of research results through the protection of Intellectual Property (IP), providing tools and methods on procedural forms and steps to structure patent applications. Specifically, they will concern the principles of Intellectual Property protection, patent submission and evaluation procedures, information on how to retrieve data on existing patents (anteriority search) and the necessary bibliographical tools.	Capece Assunta		II Semester	No	No	6.0	24	I
Petri Nets and their applications in science and engineering	Petri Nets is a formal language introduced in 1962 in the PhD thesis of Carl Adam Petri. Starting from this date, they proved their capability of modelling both discrete and continuous systems, being able to create a wide scientific literature, a meaningful set of industrial applications and the consequent releasing of a huge number of tools for their modelling and analysis. Using Petri Nets, it is possible not only to obtain qualitative information on the modelled system as liveness, presence of deadlock and stability but also to get quantitative information as the probability of staying into a particular state of the system. Up to now, Petri Nets are an assessed modelling formalism that can be used by the scientists to model the system under their study. Since their introduction, different variants and dialects of such a formalism have been introduced to raise the expressive power and to ease the modelling task. Among such derived formalisms: the Generalized Stochastic Petri Nets (where activities can cost stochastically distributed times), the Fluid Stochastic Petri Nets (where resources can be continuous as well as discrete) and the Stochastic Well-formed Nets (adding	Marrone Stefano	Ingegneria Informatica	To be agreed with the interested students	Si	No	5.0	20	I II III

	"colours" to the tokens). The objective of the course is twofold. On one hand, it introduces such this formalism since its mathematical foundations showing both the syntax and the semantics of the language as well as the main methods for the qualitative and quantitative analysis. On the other hand, it fills the gap between theory and practice of the application showing pragmatic application cases of the formalism in different aspects of science and engineering: from the security of computer-based systems to performance of industrial plants, to the modelling of continuous physical phenomena.								
Point-of-care Tests via Optical Biosensors for Medicine	Point-of-care Tests via Optical Biosensors for Medicine	Stampone Emanuela Arcadio Francesco	Ingegneria Elettronica	DA CONCORDARE CON GLI STUDENTI	Si	No	6.0	24	I II III
Principi di Sicurezza e Certificazione della Sicurezza	Obiettivo di questo corso e preparare i partecipanti ad anticipare i problemi che sorgono affrontando problemi di sicurezza nella realizzazione di prodotti hardware/software, in particolare quando sono coinvolti processi di certificazione. In particolare verrà presentata la certificazione Common Criteria (ISO15408), presentati i maggiori standard di sicurezza (NIST SP-800-53, NIST-SP800-160)	Rak Massimiliano	Ingegneria Informatica	I SEMESTRE	Si	No	3.0	12	I II III
Progettazione Strutturale con i Materiali Compositi	Progettazione e verifica di strutture in materiale composito tramite approcci numerici	Acanfora Valerio	Ingegneria Aerospaziale	FEB-MAR	Si	No	3.0	12	I
Research and Development in Smart Manufacturing	The course deals with the optimization techniques in the manufacturing field. The challenging elements in these contexts are the need: (i) to analyze a large set of parameters to understand, under a stochastic variability, their influence on assigned key performance indicators (KPIs); (ii) to represent (plot) with several tools these rela,onships; (iii) to figure out the hidden rela,onships among the collected data; (iv) based on (iii), to enhance the procedure on how to automatize the learning curve to predict the behavior of KPIs; (v) to speed up the whole analysis to reach the optimal solution.	Franciosa Pasquale Gerbino Salvatore	Ingegneria Aerospaziale Ingegneria Meccanica	Sett - Ott 2024	Si	No	4.0	16	I II I
Resistenza Residua di Strutture in Materiale Composito Sottoposte a fenomeni d'Impatto a Bassa Velocità	Il corso proposto affronta le problematiche associate ai fenomeni d'impatto a bassa velocità e alla valutazione della resistenza residua dei componenti danneggiati.	De Luca Alessandro	Ingegneria Meccanica	GIU-LUG	Si	No	3.0	12	I II III
Reverse Engineering per la Additive Manufacturing and simulation	Il corso fornisce conoscenze e competenze nell'utilizzo di strumenti HW/SW per la	Greco Alessandro	Ingegneria Meccanica	GIU-LUG	Si	No	3.0	12	I II

	ricostruzione di modelli 3D mediante l'utilizzo di tecniche di RE (laser scanning e fotogrammetria).								III
Sensori in fibra ottica per applicazioni ambientali, biomedicali, e per il monitoraggio strutturale	Sensori basati su risonanza plasmonica di superficie (SPR). Biosensori a fluorescenza. Sensori ad onda evanescente. Biosensori in guida d'onda planare. Sensori distribuiti in fibra ottica basati su scattering Brillouin, Rayleigh e Raman.	Minardo Aldo Cennamo Nunzio	Ingegneria Elettronica	II SEMESTRE	No	No	3.0	12	I II III
Statistical Learning	Metodi e modelli per l'estrazione dell'informazione dai dati e concetti base dell'apprendimento dal punto di vista statistico.	Di Gennaro Giovanni		MAG-GIU	Si	No	3.0	12	I
Tolleranza e resistenza al danno da impatto di strutture in materiale composito	Studio e simulazione del comportamento di strutture in materiale composito soggette a danni da impatto tramite approcci numerici	Acanfora Valerio	Ingegneria Aerospaziale	FEB-MAR	Si	No	3.0	12	I

Attività di tutorato - Altre Attività Didattiche						
Configurazione della categoria per anni di riferimento: I, II, III						
Numero attività obbligatorie	0					
Numero minimo di CFU	0.0					
Aggiunta attività presunte	No					
Aggiunta attività proposte	Si					

Categoria di default - Altre Attività Didattiche							
Configurazione della categoria pe	r anni di riferiment	o: I, II, III					
Numero attività obbligatorie		0					
Numero minimo di CFU		0.0					
Aggiunta attività presunte		No					
Aggiunta attività proposte		No					
Denominazione attività	Organizzatori	Descrizione	Curriculum di riferimento	Obblig.	CFU	Ore	Anni

Gestione della ricerca e della conoscenza dei sistemi di ricerca europei e internazionali		L'attività didattica, organizzata a livello di Ateneo in collaborazione con l'Agenzia per la Promozione della Ricerca Europea (APRE), si articola in 3 moduli comuni a tutti i dottorati di Ateneo: 1) Open access & science comune a tutti i dottorati; 2) Dissemination, Communication & Exploitation: come massimizzare i risultati; 3) Possibili percorsi formativi post PhD		No	1.0	3	I II III
Gestione della ricerca e della conoscenza dei sistemi di ricerca europei e internazionali		L'attività didattica, organizzata a livello di Ateneo in collaborazione con l'Agenzia per la Promozione della Ricerca Europea (APRE), si articola in 3 moduli comuni a tutti i dottorati di Ateneo: 1) Open access & science comune a tutti i dottorati; 2) Dissemination, Communication & Exploitation: come massimizzare i risultati; 3) Possibili percorsi formativi post PhD		No	1.0	1	I II III
Hackathon MADE IN NAPLES	Marcello Fera	La manifestazione «Hackathon MADE IN NAPLES» è organizzata dall'Unione Industriali NAPOLI – Sezione Giovani. I tema della manifestazione è quello dell'Innovazione e del trasferimento tecnologico per la transizione verso una Napoli smart e adaptive	Ingegneria Meccanica	No	3.0	12	I II III
HORIZON EUROPE: FOCUS PILLAR II	Agenza Apre	Corso organizzato dall'Agenza per la Promozione della Ricerca Europea (APRE)	Comune	No	1.0	3	I II III
HORIZON EUROPE: INTRODUCTION TO THE FIRST PILLAR, EXCELLENT SCIENCE	Agenzia Apre	Corso organizzato dall'Agenzia per la Promozione della Ricerca Europea (APRE)	Comune	No	1.0	3	I II III
HORIZON EUROPE: OVERVIEW OF THE PROGRAM- FOCUS PILLAR III	Agenzia Apre	Corso organizzato dall'Agenzia per la Promozione della Ricerca Europea (APRE)	Comune	No	1.0	3	I II III
Principi fondamentali di etica, uguaglianza di genere e integrità		L'Ateneo, in collaborazione con l'Agenzia per la Promozione della Ricerca Europea (APRE), organizza percorsi informativi sui bandi Horizon Europe. Sono presenti i moduli su Etica in Horizon e Europe Gender in Horizon Europe. I dottorandi saranno stimolati alla riflessione sull'orientamento (al genere) della ricerca e il ruolo nei programmi di finanziamento europeo		No	1.0	1	I II III
Valorizzazione e disseminazione dei risultati, della proprietà intellettuale e dell'accesso aperto ai dati e ai prodotti della ricerca		L'attività didattica, organizzata a livello di Scuola, si articola in seminari dedicati alla strutturazione, accesso, gestione e utilizzo dei dati, competenza oggi cruciale in tutti i tipi di organizzazione, pubblica o privata. Si presenteranno i concetti fondamentali sul data management nell'ambito di attività di ricerca e professionali: database management systems, architetture dei database, ciclo di vita dei dati, norme sulla protezione dei dati personali, redazione di un data management plan.		No	4.0	16	Ι

Corsi di Dottorato non presenti nell'offerta didattica del DRIII						
Configurazione della categoria per anni o	Configurazione della categoria per anni di riferimento: I, II, III					
Numero attività obbligatorie		0				
Numero minimo di CFU		0.0				
Aggiunta attività presunte		Si				
Aggiunta attività proposte		Si				

Corsi Universitari di Primo e Secondo Livello - Altre Attività Didattiche						
Corsi universitari di Primo e Secondo Livello presso stesso Ateneo o altro Ateneo						
Configurazione della categoria per an	Configurazione della categoria per anni di riferimento: I, II, III					
Numero attività obbligatorie		0				
Numero minimo di CFU		0.0				
Aggiunta attività presunte		Si				
Aggiunta attività proposte		Si				

Scuole di Dottorato -	Altre Attività Didattiche				
Partecipazione a Scuole di Dottorato					
Configurazione della categoria per anni di riferimento: I, II, III					
Numero attività obbligatorie	0				
Numero minimo di CFU	0.0				

Aggiunta attività presunte	Si	
Aggiunta attività proposte	Si	

Seminari - Altre Attività Didattiche					
Partecipazione a seminari					
Configurazione della categoria per anni di riferimento: I, II, III					
Numero attività obbligatorie	0				
Numero minimo di CFU	0.0				
Aggiunta attività presunte	Si				
Aggiunta attività proposte	Si				

Categoria di default - Attività Formative di Ricerca							
Configurazione della categor	ria per anni di riferiment	o: I, II, III					
Numero attività obbligat	orie			0			
Numero minimo di CFU				0.0			
Aggiunta attività presunte			No				
Aggiunta attività proposte				No			
Tipologia attività	Documentazione che il dottorando deve presentare	Documentazione che il supervisore deve presentare	Prevista delibera del collegio docenti	Descrizione	CFU	Obblig.	Anni
Attività di ricerca			No	Attività di ricerca, pubblicazioni scientifiche, partecipazione a congressi, campagne di misura, discussione finale della tesi, conseguimento titolo, ecc.	da 0 CFU a 60 CFU	No	I II III

Stage aziendale - Attività Formative di Ricerca

Stage aziendale

Configurazione della categoria per anni di riferimento: I, II, III

Numero attività obbligatorie0Numero minimo di CFU0.0Aggiunta attività presunteNo

Aggiunta attività proposte Si

CFU che possono essere ottenuti per attività Da 1 a 60 CFU

Anni per cui è possibile aggiungere attività della categoria I, II, III

Prevista delibera collegio dei docenti No

Documentazione che il dottorando deve presentare

Attestato dell'azienda ospitante

Documentazione che il supervisore deve presentare